設(shè)點P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上一點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,I為△PF1F2的內(nèi)心,若S△IPF1+S△IPF2=2S△IF1F2,則該橢圓的離心率是( 。
A.
1
2
B.
2
2
C.
3
2
D.
1
4
設(shè)△PF1F2的內(nèi)切圓半徑為r,
則由S△IPF1+S△IPF2=2S△IF1F2,
1
2
PF1×r+
1
2
PF2×r=2×
1
2
F1F2×r
即PF1+PF2=2F1F2
即2a=2×2c
∴橢圓的離心率e=
c
a
=
1
2

故選 A
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•上饒一模)設(shè)點P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上一點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,I為△PF1F2的內(nèi)心,若S△IPF1+S△IPF2=2S△IF1F2,則該橢圓的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)點P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
與圓x2+y2=3b2的一個交點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,且|PF1|=3|PF2|,則橢圓的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•河東區(qū)二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)

(1)設(shè)F是橢圓的一個焦點,M橢圓上的任意一點,|MF|的最大值與最小值的算術(shù)平均等于4,橢圓的頂點A與N(-2,0)關(guān)于直線x+y=0對稱,求此橢圓方程;
(2)設(shè)點P是橢圓
x2
a2
+
y2
b2
=1
上異于長軸端點的任意一點,F(xiàn)1、F2為兩焦點,記∠F1PF2=θ,求證|PF1|•|PF2|=
2b2
1+cosθ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)點p是橢圓
x2
a2
+
y2
b2
=1
(a>0,b>0)上一點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,I為△PF1F2的內(nèi)心,若S△IPF1+S△IPF2=2S△IF1F2,則該橢圓的離心率是
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)點p是橢圓
x2
a2
+
y2
b2
=1
(a>0,b>0)上一點,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,I為△PF1F2的內(nèi)心,若 S△IPF1+S△IPF2=2S△IF1F2,則該橢圓的離心率是______.

查看答案和解析>>

同步練習冊答案