在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到兩條坐標(biāo)軸的距離之和等于它到點(diǎn)的距離,記點(diǎn)的軌跡為曲線.
(I) 給出下列三個(gè)結(jié)論:
①曲線關(guān)于原點(diǎn)對(duì)稱;
②曲線關(guān)于直線對(duì)稱;
③曲線軸非負(fù)半軸,軸非負(fù)半軸圍成的封閉圖形的面積小于;
其中,所有正確結(jié)論的序號(hào)是_____;
(Ⅱ)曲線上的點(diǎn)到原點(diǎn)距離的最小值為______.

②③; 

解析試題分析:(I)P點(diǎn)到兩坐標(biāo)軸距離分別為 曲線方程為 ,該方程中用分別替換原方程中的方程改變,所以曲線不關(guān)于原點(diǎn)對(duì)稱;而用分別替換原方程中的方程不變,所以曲線關(guān)于直線對(duì)稱.曲線與x軸非負(fù)半軸,軸非負(fù)半軸圍成的封閉圖形即為與x軸非負(fù)半軸,軸非負(fù)半軸圍成的封閉圖形,由化簡(jiǎn)得:,它的圖象可由向左平移一個(gè)單位,再向下平移1個(gè)單位而得到,它的圖象與兩坐標(biāo)軸的交點(diǎn)為,結(jié)合圖象可知: ,故正確的序號(hào)為②③.(Ⅱ)由得: ,即,當(dāng)時(shí),該式可化簡(jiǎn)為;當(dāng)時(shí),該式可化簡(jiǎn)為
,即,進(jìn)而可以畫出曲線,結(jié)合圖象可知,曲線與直線 在第一象限的交點(diǎn)距離原點(diǎn)最近,由解得:,故最短距離為 .
考點(diǎn):曲線與方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)雙曲線的左、右焦點(diǎn)分別為,離心率為,過(guò)的直線與雙曲線的右支交于兩點(diǎn),若是以為直角頂點(diǎn)的等腰直角三角形,則_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

、是雙曲線的焦點(diǎn),點(diǎn)P在雙曲線上,若點(diǎn)P到焦點(diǎn)的距離等于9,則點(diǎn)P到焦點(diǎn)的距離等于_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

為橢圓上一點(diǎn),為兩焦點(diǎn),,則橢圓的離心率        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)拋物線上一點(diǎn)軸的距離是,則點(diǎn)到該拋物線焦點(diǎn)的距離是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知雙曲線的左頂點(diǎn)與拋物線的焦點(diǎn)的距離為
4,且雙曲線的一條漸近線與拋物線準(zhǔn)線的交點(diǎn)坐標(biāo)為,則雙曲線的焦距為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

雙曲線的離心率為, 則m等于    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,已知雙曲線C1,曲線C2:|y|=|x|+1,P是平面內(nèi)一點(diǎn),若存在過(guò)點(diǎn)P的直線與C1,C2都有公共點(diǎn),則稱P為“C1﹣C2型點(diǎn)“

(1)在正確證明C1的左焦點(diǎn)是“C1﹣C2型點(diǎn)“時(shí),要使用一條過(guò)該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線y=kx與C2有公共點(diǎn),求證|k|>1,進(jìn)而證明原點(diǎn)不是“C1﹣C2型點(diǎn)”;
(3)求證:圓x2+y2=內(nèi)的點(diǎn)都不是“C1﹣C2型點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

拋物線C:過(guò)點(diǎn)(4,2),則拋物線C的焦點(diǎn)坐標(biāo)為      .

查看答案和解析>>

同步練習(xí)冊(cè)答案