已知i是虛數(shù)單位,a,b∈R,則“a=b=1”是“(a+bi)2=2i”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件
考點:復(fù)數(shù)相等的充要條件,充要條件
專題:簡易邏輯
分析:利用復(fù)數(shù)的運算性質(zhì),分別判斷“a=b=1”⇒“(a+bi)2=2i”與“a=b=1”?“(a+bi)2=2i”的真假,進(jìn)而根據(jù)充要條件的定義得到結(jié)論.
解答: 解:當(dāng)“a=b=1”時,“(a+bi)2=(1+i)2=2i”成立,
故“a=b=1”是“(a+bi)2=2i”的充分條件;
當(dāng)“(a+bi)2=a2-b2+2abi=2i”時,“a=b=1”或“a=b=-1”,
故“a=b=1”是“(a+bi)2=2i”的不必要條件;
綜上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要條件;
故選A
點評:本題考查的知識點是充要條件的定義,復(fù)數(shù)的運算,難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,已知AB=4,AC=3,∠BAC=60°,點D,E分別是邊AB,AC上的點,且DE=2,則
S四邊形BCED
S△ABC
的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某個服裝店經(jīng)營某種服裝,在某周內(nèi)獲純利y(元),與該周每天銷售這種服裝件數(shù)x具有線性相關(guān)關(guān)系,其回歸直線方程為
y
=4.75x+51.36,則下列結(jié)論中不正確的是( 。
A、y與x具有正相關(guān)關(guān)系
B、回歸直線過樣本點的中心(
.
x
,
.
y
C、若該周每天銷售這種服裝件數(shù)x增加1件,則獲利約增加4.75元
D、若每周每天銷售這種服裝10件,則可斷定獲利必為98.86元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x>0,總有(x+1)ex>1,則¬p為( 。
A、?x0≤0,使得(x0+1)e x0≤1
B、?x0>0,使得(x0+1)e x0≤1
C、?x>0,總有(x+1)ex≤1
D、?x≤0,總有(x+1)ex≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,則輸出的S的值是( 。
A、
9
10
B、
8
9
C、
7
8
D、
6
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若如圖所示框圖所給的程序運行結(jié)果為S=41,那么判斷框中應(yīng)填入的關(guān)于k的條件是( 。
A、k≥6B、k≥5
C、k≤6D、k≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若將函數(shù)f(x)=sin2x+cos2x的圖象向右平移φ個單位,所得圖象關(guān)于y軸對稱,則φ的最小正值是( 。
A、
π
8
B、
π
4
C、
8
D、
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各結(jié)論中:
①拋物線y=
1
4
x2的焦點到直線y=x-1的距離為
2
;
②已知函數(shù)f(x)=xα的圖象經(jīng)過點(2,
2
2
),則f(4)的值等于
1
2
;
③命題“存在x∈R,x2-x>0”的否定是“對于任意x∈R,x2-x<0.
正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
f(x+2)+2,x<3
2x ,x≥3
,則f(log23)=
 

查看答案和解析>>

同步練習(xí)冊答案