【題目】某市開發(fā)了一塊等腰梯形的菜花風(fēng)景區(qū)(如圖).經(jīng)測量,長為百米,長為百米,與相距百米,田地內(nèi)有一條筆直的小路(在上,在上)與平行且相距百米.現(xiàn)準(zhǔn)備從風(fēng)景區(qū)入口處出發(fā)再修一條筆直的小路與交于,在小路與的交點(diǎn)處擬建一座瞭望塔.
(1)若瞭望塔恰好建在小路的中點(diǎn)處,求小路的長;
(2)兩條小路與將菜花風(fēng)景區(qū)劃分為四個區(qū)域,若將圖中陰影部分規(guī)劃為觀賞區(qū).求觀賞區(qū)面積的最小值.
【答案】(1)百米;(2)()平方百米.
【解析】
(1)過點(diǎn)P、N、C分別做AB的垂線,垂足分別為Q、M、G,在直角三角形AMN中,結(jié)合勾股定理,即可求解;
(2)以直線CD所在直線為軸,邊CD的垂直平分線為軸建立如圖所示的平面直角坐標(biāo)系,設(shè),得出面積,結(jié)合基本不等式,即可求解.
(1)過點(diǎn)P、N、C分別做AB的垂線,垂足分別為Q、M、G,
因為P是AN的中點(diǎn),所以,
由已知條件易知是等腰直角三角形,所以,
所以,
在直角三角形AMN中,由勾股定理得,
答:小路AN的長為百米;
(2)以直線CD所在直線為軸,邊CD的垂直平分線為軸建立如圖所示的平面直角坐標(biāo)系,
設(shè),則直線,
聯(lián)立直線,得,
所以的高為,
所以,
令,則,
所以當(dāng)即時,S的最小值為.
答:觀賞區(qū)面積的最小值為()平方百米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(),將曲線向左平移2個單位長度得到曲線.
(1)求曲線的普通方程和極坐標(biāo)方程;
(2)設(shè)直線與曲線交于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓周率是圓的周長與直徑的比值,一般用字母表示.我們可以通過設(shè)計一個試驗來估計的值:從表示的區(qū)域內(nèi)隨機(jī)抽取200個實(shí)數(shù)對,其中x,y兩個數(shù)能與1構(gòu)成鈍角三角形三邊長的數(shù)對共有56個.則用隨機(jī)模擬的方法估計的近似值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市居民用天然氣實(shí)行階梯價格制度,具體見下表:
階梯 | 年用氣量(立方米) | 價格(元/立方米) |
第一階梯 | 不超過228的部分 | 3.25 |
第二階梯 | 超過228而不超過348的部分 | 3.83 |
第三階梯 | 超過348的部分 | 4.70 |
從該市隨機(jī)抽取10戶(一套住宅為一戶)同一年的天然氣使用情況,得到統(tǒng)計表如下:
居民用氣編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年用氣量(立方米) | 95 | 106 | 112 | 161 | 210 | 227 | 256 | 313 | 325 | 457 |
(1)求一戶居民年用氣費(fèi)y(元)關(guān)于年用氣量x(立方米)的函數(shù)關(guān)系式;
(2)現(xiàn)要在這10戶家庭中任意抽取3戶,求抽到的年用氣量超過228立方米而不超過348立方米的用戶數(shù)的分布列與數(shù)學(xué)期望;
(3)若以表中抽到的10戶作為樣本估計全市居民的年用氣情況,現(xiàn)從全市中依次抽取10戶,其中恰有k戶年用氣量不超過228立方米的概率為,求取最大值時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,,,為的中點(diǎn).
(I)若為上的一點(diǎn),且與直線垂直,求的值;
(Ⅱ)在(I)的條件下,設(shè)異面直線與所成的角為45°,求直線與平面成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在R上的函數(shù)的導(dǎo)函數(shù),且,則 的大小關(guān)系為( )
A. a<b<c B. b<a<c C. c<a<b D. c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖為國家統(tǒng)計局網(wǎng)站發(fā)布的《2018年國民經(jīng)濟(jì)和社會發(fā)展統(tǒng)計公報》中居民消費(fèi)價格月度漲跌幅度的折線圖(注:同比是今年第個月與去年第個月之比,環(huán)比是現(xiàn)在的統(tǒng)計周期和上一個統(tǒng)計周期之比)
下列說法正確的是( )
①2018年6月CPI環(huán)比下降0.1%,同比上漲1.9%
②2018年3月CPI環(huán)比下降1.1%,同比上漲2.1%
③2018年2月CPI環(huán)比上漲0.6%,同比上漲1.4%
④2018年6月CPI同比漲幅比上月略微擴(kuò)大1.9個百分點(diǎn)
A.①②B.③④C.①③D.②④.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—5:參數(shù)方程選講]
在直角坐標(biāo)系xoy中,曲線的參數(shù)方程是(t是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若兩曲線交點(diǎn)為A、B,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過原點(diǎn)的動直線與圓: 交于兩點(diǎn).
(1)若,求直線的方程;
(2)軸上是否存在定點(diǎn),使得當(dāng)變動時,總有直線的斜率之和為0?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com