【題目】甲、乙兩袋裝有大小相同的紅球和白球,甲袋裝有2個(gè)紅球和2個(gè)白球,乙袋裝有2個(gè)紅球和n個(gè)白球.現(xiàn)從甲、乙兩袋中各任取2個(gè)球.

1)若,求取到的4個(gè)球全是紅球的概率;

2)若取到的4個(gè)球中至少有2個(gè)紅球的概率為,求n

【答案】12

【解析】

(1)記“取到的4個(gè)球全是紅球”為事件A,分別計(jì)算從甲乙兩袋中取出的都是紅球的概率,由相互獨(dú)立事件的概率乘法公式計(jì)算可得答案.

(2)記“取到的4個(gè)球至多有一個(gè)紅球”為事件B,“取到的4個(gè)球只有1個(gè)紅球”為事件,“取到的4個(gè)球全是白球”為事件,將三個(gè)事件的概率表示出來(lái),由可得關(guān)于的關(guān)系式,計(jì)算可得答案.

1)解:記“取到的4個(gè)球全是紅球”為事件A,取到的4個(gè)球全是紅球的概率為;

2)解:記“取到的4個(gè)球至多有一個(gè)紅球”為事件B,“取到的4個(gè)球只有1個(gè)紅球”為事件,“取到的4個(gè)球全是白球”為事件,

由已知得,即

,

亦即,,解得(舍去),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)在定義域上的最大值為1,求實(shí)數(shù)的值;

2)設(shè)函數(shù),當(dāng)時(shí),對(duì)任意的恒成立,求滿足條件的實(shí)數(shù)的最小整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),證明:

2)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)某社團(tuán)為研究高三學(xué)生課下鉆研數(shù)學(xué)時(shí)間與數(shù)學(xué)考試中的解答題得分的關(guān)系,隨機(jī)調(diào)查了某中學(xué)高三某班名學(xué)生每周課下鉆研數(shù)學(xué)時(shí)間(單位:小時(shí))與高三下學(xué)期期中考試數(shù)學(xué)解答題得分,數(shù)據(jù)如下表:

2

4

6

8

10

12

30

38

44

48

50

54

1)根據(jù)上述數(shù)據(jù),求出數(shù)學(xué)考試中的解答題得分與該學(xué)生課下鉆研數(shù)學(xué)時(shí)間的線性回歸方程,并預(yù)測(cè)某學(xué)生每周課下鉆研數(shù)學(xué)時(shí)間為小時(shí)其數(shù)學(xué)考試中的解答題得分;

2)從這人中任選人,求人中至少有人課下鉆研數(shù)學(xué)時(shí)間不低于小時(shí)的概率.

參考公式:,其中, ;參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),

1)討論的奇偶性與單調(diào)性;

2)求的反函數(shù);

3)若,解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某運(yùn)輸公司每天至少向某地運(yùn)送物質(zhì),該公司有8輛載重為型卡車與4輛載重為型卡車,有10名駕駛員,每輛卡車每天往返的次數(shù)為型卡車4次,型卡車3次;每輛卡車每天往返的成本為型卡車320元,型卡車504元,你認(rèn)為該公司怎樣調(diào)配車輛,使運(yùn)費(fèi)成本最低,最低運(yùn)費(fèi)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)三位數(shù),其十位上的數(shù)字小于百位上的數(shù)字,也小于個(gè)位上的數(shù)字,如523,769等,這樣的三位數(shù)共有________個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 在平行四邊形ABCD中,A(1,1),=(6,0),點(diǎn)M是線段AB的中點(diǎn),線段CMBD交于點(diǎn)P.(1) =(3,5),求點(diǎn)C的坐標(biāo);(2) 當(dāng)||=||時(shí),求點(diǎn)P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知常數(shù),向量,,經(jīng)過(guò)定點(diǎn)且以為方向向量的直線與經(jīng)過(guò)定點(diǎn)且以為方向向量的直線交于點(diǎn),其中.

1)求點(diǎn)的軌跡的方程;

2)若,過(guò)的直線交曲線,兩點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案