【題目】 在平行四邊形ABCD中,A(1,1),=(6,0),點M是線段AB的中點,線段CMBD交于點P.(1) =(3,5),求點C的坐標;(2) ||=||時,求點P的軌跡.

【答案】(1)(10,6)(2)

【解析】

(1)根據(jù)向量相等列方程組解得點C的坐標,(2)先根據(jù)||=||得點D的軌跡,再根據(jù)條件得P,D坐標關(guān)系,利用相關(guān)點法求點P的軌跡.

解:(1)設(shè)點C的坐標為(x0,y0),

x0=10 y0=6 即點C(10,6)

(2) ||=|| ∴點D的軌跡為(x-1)2+(y-1)2=36 (y≠1)

MAB的中點 P的比為

設(shè)P(x,y),由B(7,1) D(3x-14,3y-2)

∴點P的軌跡方程為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)拋物線的頂點在坐標原點,焦點軸正半軸上,過點的直線交拋物線于兩點,線段的長是 的中點到軸的距離是.

(1)求拋物線的標準方程;

2過點作斜率為的直線與拋物線交于兩點直線交拋物線于,

求證 軸為的角平分線;

②若交拋物線于,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場經(jīng)銷一批進價為每件30元的商品,在市場試銷中發(fā)現(xiàn)此商品的銷售單價x(元)與日銷售量y(件)之間有如下表所示的關(guān)系:

x

30

40

45

50

y

60

30

15

0

在所給的坐標圖紙中,根據(jù)表中提供的數(shù)據(jù),描出實數(shù)對(xy)的對應(yīng)點,并確定yx的一個函數(shù)關(guān)系式;

(2)設(shè)經(jīng)營此商品的日銷售利潤為P元,根據(jù)上述關(guān)系,寫出P關(guān)于x的函數(shù)關(guān)系式,并指出銷售單價x為多少元時,才能獲得最大日銷售利潤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,點A的極坐標為(3, ),點B的極坐標為(6, ),曲線C:(x﹣1)2+y2=1
(1)求曲線C和直線AB的極坐標方程;
(2)過點O的射線l交曲線C于M點,交直線AB于N點,若|OM||ON|=2,求射線l所在直線的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知矩形的長為2,寬為1,.邊分別在.軸的正半軸上,點與坐標原點重合(如圖所示)。將矩形折疊,使點落在線段上。

(1)若折痕所在直線的斜率為,試求折痕所在直線的方程;

(2)當時,求折痕長的最大值;

(3)當時,折痕為線段,設(shè),試求的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)求不等式的解集;

(2)若對一切,均有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,.

(1) 求數(shù)列的通項公式;

(2)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位: ).根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布

(1)假設(shè)生產(chǎn)狀態(tài)正常,記表示一天內(nèi)抽取的16個零件中其尺寸在之外的零件數(shù),求的數(shù)學期望;

(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.

(。┰囌f明上述監(jiān)控生產(chǎn)過程方法的合理性;

(ⅱ)下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計算得,其中

抽取的第個零件的尺寸,

用樣本平均數(shù)作為的估計值,用樣本標準差作為的估計值,利用估計值判斷是否需對當天的生產(chǎn)過程進行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(精確到0.01).

附:若隨機變量服從正態(tài)分布,則,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,DBC的中點.

(1)求證:A1B∥平面ADC1;

(2)若ABAC,ABAC=1,AA1=2,求幾何體ABD-A1B1C1的體積.

查看答案和解析>>

同步練習冊答案