【題目】如圖梯形ABCD中,ADBC,∠ABC=90°,ADBCAB=2∶3∶4,EF分別是AB,CD的中點,將四邊形ADFE沿直線EF進行翻折,給出四個結論:①DFBC;

BDFC;

③平面DBF⊥平面BFC;

④平面DCF⊥平面BFC.

則在翻折過程中,可能成立的結論的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】分析:利用空間中線線、線面、面面間的位置關系求解.

詳解:

對于①:因為BCAD,ADDF相交不垂直,所以BCDF不垂直,則①錯誤;

對于②:設點D在平面BCF上的射影為點P,BPCF時就有BDFC,AD:BC:AB=2:3:4可使條件滿足,所以②正確;

對于③:當點P落在BF上時, DP平面BDF,從而平面BDF⊥平面BCF,所以③正確;

對于④:因為點D的投影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④錯誤.

故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系xOy中,過橢圓M: (a>b>0)右焦點的直線x+y﹣ =0交M于A,B兩點,P為AB的中點,且OP的斜率為
(1)求M的方程
(2)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sn . 已知S3=a22 , 且S1 , S2 , S4成等比數(shù)列,求{an}的通項式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=sinx的圖象向右平移 個單位后得到函數(shù)y=g(x)的圖象,則函數(shù)y=f(x)+g(x)的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足,,數(shù)列滿足,,且.

(1)求數(shù)列的通項公式;

(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項公式;

(3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12分)已知一次函數(shù)f(x)滿足:f(1)=2, f(2x)=2f(x)-1.

(1) 求f(x)的解析式;

(2) 設, 若|g(x)|-af(x)+a≥0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖像向左平移個單位長度,再將圖像上所有點的橫坐標伸長到原來的倍(縱坐標不變),得到的圖像.

(1)求的單調遞增區(qū)間;

(2)若對于任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)從某校高一年級隨機抽取名學生,獲得了他們日平均睡眠時間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表:

組號

分組

頻數(shù)

頻率

Ⅰ)求的值.

Ⅱ)若,補全表中數(shù)據(jù),并繪制頻率分布直方圖.

Ⅲ)假設同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,若上述數(shù)據(jù)的平均值為,求,的值,并由此估計該校高一學生的日平均睡眠時間不少于小時的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭天的日用水量數(shù)據(jù)(單位:)和使用了節(jié)水龍頭天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:

未使用節(jié)水龍頭天的日用水量頻數(shù)分布表

日用水量

頻數(shù)

使用了節(jié)水龍頭天的日用水量頻數(shù)分布表

日用水量

頻數(shù)

(Ⅰ)作出使用了節(jié)水龍頭天的日用水量數(shù)據(jù)的頻率分布直方圖;

(Ⅱ)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)

查看答案和解析>>

同步練習冊答案