【題目】在平面直角坐標系xoy中,已知圓C1:(x+3)2+(y﹣1)2=4和圓C2:(x﹣4)2+(y﹣5)2=4
若直線l過點A(4,0),且被圓C1截得的弦長為2 , 求直線l的方程
科目:高中數(shù)學 來源: 題型:
【題目】某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,如圖是根據(jù)調查結果繪制的觀眾日均收看該類體育節(jié)目時間的頻率分布直方圖,其中收看時間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].則圖中x的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】求滿足下列條件的橢圓的標準方程:
(1)焦點在y軸上,焦距是4,且經過點M(3,2);
(2)c∶a=5∶13,且橢圓上一點到兩焦點的距離的和為26.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四種說法
①在△ABC中,若∠A>∠B,則sinA>sinB;
②等差數(shù)列{an}中,a1 , a3 , a4成等比數(shù)列,則公比為;
③已知a>0,b>0,a+b=1,則+的最小值為5+2;
④在△ABC中,已知== , 則∠A=60°.
正確的序號有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:ρsin=4和圓C:ρ=2kcos(k≠0),若直線l上的點到圓C上的點的最小距離等于2.求實數(shù)k的值并求圓心C的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠擬生產甲、乙兩種適銷產品,每件銷售收入分別為3000元,2000元.甲、乙產品都需要在A、B兩種設備上加工,在每臺A、B設備上加工一件甲所需工時分別為1,2,加工一件乙設備所需工時分別為2,1.A、B兩種設備每月有效使用臺時數(shù)分別為400和500,分別用表示計劃每月生產甲,乙產品的件數(shù).
(Ⅰ)用列出滿足生產條件的數(shù)學關系式,并畫出相應的平面區(qū)域;
(Ⅱ)問分別生產甲、乙兩種產品各多少件,可使收入最大?并求出最大收入.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點F1、F2是橢圓C1的左右焦點,橢圓C1與雙曲線C2的漸近線交于點P,PF1⊥PF2 , 橢圓C1與雙曲線C2的離心率分別為e1、e2 , 則( )
A.e22=
B.e22=
C.e22=
D.e22=
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com