【題目】設(shè)拋物線的焦點為,過且斜率為的直線交于,兩點,

(1)求的方程;

(2)求過點且與的準(zhǔn)線相切的圓的方程.

【答案】(1) y=x–1,(2)

【解析】分析:(1)根據(jù)拋物線定義得,再聯(lián)立直線方程與拋物線方程,利用韋達(dá)定理代入求出斜率,即得直線的方程;(2)先求AB中垂線方程,即得圓心坐標(biāo)關(guān)系,再根據(jù)圓心到準(zhǔn)線距離等于半徑得等量關(guān)系,解方程組可得圓心坐標(biāo)以及半徑,最后寫出圓的標(biāo)準(zhǔn)方程.

詳解:(1)由題意得F(1,0),l的方程為y=kx–1)(k>0).

設(shè)Ax1y1),Bx2,y2).

,

所以

由題設(shè)知,解得k=–1(舍去),k=1.

因此l的方程為y=x–1.

(2)由(1)得AB的中點坐標(biāo)為(3,2),所以AB的垂直平分線方程為

,

設(shè)所求圓的圓心坐標(biāo)為(x0,y0),則

解得

因此所求圓的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(1,0,0),B(0,1,0),C(0,0,2).

(1)若,求點D的坐標(biāo);

(2)問是否存在實數(shù)α,β,使得=α+β成立?若存在,求出α,β的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是平行四邊形,平面⊥平面,,,,,,

(Ⅰ)求證:平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x)滿足f(x+1)=f(﹣x),當(dāng)x∈(0,1)時,f(x)= , 則f(x)在區(qū)間(1,)內(nèi)是(  )
A.增函數(shù)且f(x)>0
B.增函數(shù)且f(x)<0
C.減函數(shù)且f(x)>0
D.減函數(shù)且f(x)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的正方形ADEF與梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=AB=1,點M在線段EC上.
(Ⅰ)證明:平面BDM⊥平面ADEF;
(Ⅱ)判斷點M的位置,使得三棱錐B﹣CDM的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,已知圓C1:(x+3)2+(y﹣1)2=4和圓C2:(x﹣4)2+(y﹣5)2=4
若直線l過點A(4,0),且被圓C1截得的弦長為2 , 求直線l的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy曲線C1的參數(shù)方程為 (θ為參數(shù)),曲線C2的普通方程為以原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)求曲線C1的普通方程和C2的極坐標(biāo)方程;

(2)AB是曲線C2上的兩點,OAOB,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=2,3acosB﹣bcosC=ccosB,點D在線段BC上.

(1)若∠ADC= ,求AD的長;
(2)若BD=2DC,△ACD的面積為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l與拋物線交于點A,B兩點,與x軸交于點M,直線OA,OB的斜率之積為.

(1)證明:直線AB過定點;

(2)以AB為直徑的圓P交x軸于E,F(xiàn)兩點,O為坐標(biāo)原點,求|OE||OF|的值.

查看答案和解析>>

同步練習(xí)冊答案