【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,.

(1)證明:平面

(2)設(shè)點(diǎn)在線段上運(yùn)動,平面與平面所成銳二面角為,求的取值范圍.

【答案】1)證明見解析 2

【解析】

(1)先證明,結(jié)合面面垂直性質(zhì)定理即可得到平面;

(2) 建立分別以直線,,軸,軸,軸的如圖所示的空間直角坐標(biāo)系,

求出平面與平面的法向量,表示,求函數(shù)的值域即可.

解:(1)證明:在梯形中,因?yàn)?/span>,

所以,所以

所以,所以.

因?yàn)槠矫?/span>平面,平面平面,

因?yàn)?/span>平面,所以平面.

2)由(1)可建立分別以直線,軸,軸,軸的如圖所示的空間直角坐標(biāo)系,

,則,.

,.

設(shè)為平面的一個(gè)法向量,

,取,則,

是平面的一個(gè)法向量

,∴當(dāng)時(shí),有最小值,當(dāng)時(shí),有最大值

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐內(nèi)接于球O,平面ABC,為等邊三角形,且邊長,球的表面積為,則直線PC與平面PAB所成的角的正弦值為

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;

2)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值;

3)對任意,恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,為邊的中點(diǎn).將△沿翻折,得到四棱錐.設(shè)線段的中點(diǎn)為,在翻折過程中,有下列三個(gè)命題:

總有平面;

三棱錐體積的最大值為;

存在某個(gè)位置,使所成的角為

其中正確的命題是____.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,沿河有、兩城鎮(zhèn),它們相距20千米,以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護(hù)環(huán)境,污水需經(jīng)處理才能排放,兩城鎮(zhèn)可以單獨(dú)建污水處理廠,或者聯(lián)合建污水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送),依據(jù)經(jīng)驗(yàn)公式,建廠的費(fèi)用為(萬元),表示污水流量,鋪設(shè)管道的費(fèi)用(包括管道費(fèi))(萬元),表示輸送污水管道的長度(千米).已知城鎮(zhèn)和城鎮(zhèn)的污水流量分別為,兩城鎮(zhèn)連接污水處理廠的管道總長為20千米;假定:經(jīng)管道運(yùn)輸?shù)奈鬯髁坎话l(fā)生改變,污水經(jīng)處理后直接排入河中;請解答下列問題:

1)若在城鎮(zhèn)和城鎮(zhèn)單獨(dú)建廠,共需多少總費(fèi)用?

2)考慮聯(lián)合建廠可能節(jié)約總投資,設(shè)城鎮(zhèn)到擬建廠的距離為千米,求聯(lián)合建廠的總費(fèi)用的函數(shù)關(guān)系式,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BD為圓錐AO底面的直徑,若,C是圓錐底面所在平面內(nèi)一點(diǎn),,且AC與圓錐底面所成角的正弦值為.

(1)求證:平面平面ACD;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過橢圓: 的左頂點(diǎn)和上頂點(diǎn),橢圓的右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動點(diǎn),直線與直線分別交于兩點(diǎn)。

(1)求橢圓方程;

(2)求線段的長度的最小值;

(3)當(dāng)線段的長度最小時(shí),在橢圓上有兩點(diǎn),使得,的面積都為,求直線y軸上的截距。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)滿足,且當(dāng)時(shí),成立,若,,則a,b,c的大小關(guān)系是()

A. aB. C. D. c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)當(dāng)時(shí),證明:有且只有一個(gè)零點(diǎn);

)求函數(shù)的極值.

查看答案和解析>>

同步練習(xí)冊答案