等差數(shù)列的前項(xiàng)和為,.
(1)求數(shù)列的通項(xiàng)公式;(2)令,求.

(1) ,(2).

解析試題分析:(1) 求特殊數(shù)列通項(xiàng),一般方法為待定系數(shù)法. 依題,得,,(2)由(1)得,,,利用裂項(xiàng)相消法求和. ,

.解:(1)依題,得,      (4分)
                  (6分)
(2)由(1)得,        (8分)

= (12分)
                    (13分)
                    (14分)
考點(diǎn):等差數(shù)列通項(xiàng),裂項(xiàng)相消法求和

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等比數(shù)列中,已知
(1)求數(shù)列的通項(xiàng)公式.
(2)若分別為等差數(shù)列的第3項(xiàng)和第5項(xiàng),試求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(已知是首項(xiàng)為1,公差為2的等差數(shù)列,表示的前項(xiàng)和.
(1)求;
(2)設(shè)是首項(xiàng)為2的等比數(shù)列,公比滿足,求的通項(xiàng)公式及其前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如果數(shù)列滿足:,則稱數(shù)列階“歸化數(shù)列”.
(1)若某4階“歸化數(shù)列”是等比數(shù)列,寫出該數(shù)列的各項(xiàng);
(2)若某11階“歸化數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)若為n階“歸化數(shù)列”,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)(2011•福建)已知等差數(shù)列{an}中,a1=1,a3=﹣3.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{an}的前k項(xiàng)和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的各項(xiàng)均為正數(shù),記,,
 .
(1)若,且對(duì)任意,三個(gè)數(shù)組成等差數(shù)列,求數(shù)列的通項(xiàng)公式.
(2)證明:數(shù)列是公比為的等比數(shù)列的充分必要條件是:對(duì)任意,三個(gè)數(shù)組成公比為的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足,且恰為等比數(shù)列的前三項(xiàng).
(1)證明:數(shù)列為等差數(shù)列; (2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}中,a1=2,an=2-(n≥2,n∈N*).
(1)設(shè)bn,n∈N*,求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)cn(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為等差數(shù)列,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若等比數(shù)列滿足,,求數(shù)列的前項(xiàng)和公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案