(12分)(2011•福建)已知等差數(shù)列{an}中,a1=1,a3=﹣3.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{an}的前k項和Sk=﹣35,求k的值.
(Ⅰ)an=1+(n﹣1)×(﹣2)=3﹣2n(Ⅱ)k=7
解析試題分析:(I)設(shè)出等差數(shù)列的公差為d,然后根據(jù)首項為1和第3項等于﹣3,利用等差數(shù)列的通項公式即可得到關(guān)于d的方程,求出方程的解即可得到公差d的值,根據(jù)首項和公差寫出數(shù)列的通項公式即可;
(II)根據(jù)等差數(shù)列的通項公式,由首項和公差表示出等差數(shù)列的前k項和的公式,當(dāng)其等于﹣35得到關(guān)于k的方程,求出方程的解即可得到k的值,根據(jù)k為正整數(shù)得到滿足題意的k的值.
解:(I)設(shè)等差數(shù)列{an}的公差為d,則an=a1+(n﹣1)d
由a1=1,a3=﹣3,可得1+2d=﹣3,解得d=﹣2,
從而,an=1+(n﹣1)×(﹣2)=3﹣2n;
(II)由(I)可知an=3﹣2n,
所以Sn==2n﹣n2,
進(jìn)而由Sk=﹣35,可得2k﹣k2=﹣35,
即k2﹣2k﹣35=0,解得k=7或k=﹣5,
又k∈N+,故k=7為所求.
點(diǎn)評:此題考查學(xué)生靈活運(yùn)用等差數(shù)列的通項公式及前n項和的公式化簡求值,是一道基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列和滿足.若為等比數(shù)列,且
(1)求與;
(2)設(shè)。記數(shù)列的前項和為.
(i)求;
(ii)求正整數(shù),使得對任意,均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列的前n項和為,已知,為整數(shù),且.
(1)求的通項公式;
(2)設(shè),求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是等差數(shù)列,是各項都為正數(shù)的等比數(shù)列,且,,,
(1)求,的通項公式.(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)滿足以下兩個條件得有窮數(shù)列為階“期待數(shù)列”:
①,②.
(1)若等比數(shù)列為階“期待數(shù)列”,求公比;
(2)若一個等差數(shù)列既為階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;
(3)記階“期待數(shù)列”的前項和為.
()求證:;
()若存在,使,試問數(shù)列是否為階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項和,數(shù)列滿足 .
(1)求數(shù)列的通項;
(2)求數(shù)列的通項;
(3)若,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足奇數(shù)項成等差數(shù)列,而偶數(shù)項成等比數(shù)列,且,成等差數(shù)列,數(shù)列的前項和為.
(1)求通項;
(2)求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com