【題目】已知函數(shù)
(1)作出函數(shù)f(x)的大致圖象;
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間;
(3)當時,由圖象寫出f(x)的最小值.
【答案】(1); (2)增區(qū)間為,減區(qū)間為;(3).
【解析】
(1)化簡函數(shù)的解析式為f(x)=,再利用二次函數(shù)的圖象特征作出函數(shù)的圖象;
(2)由(1)結(jié)合函數(shù)的圖象可得函數(shù)f(x)的單調(diào)減區(qū)間以及單調(diào)增區(qū)間.
(3)分當≥1 和當0<<1兩種情況,結(jié)合圖象利用函數(shù)的單調(diào)性求出函數(shù)的最小值.
(1)函數(shù)f(x)=|x|(x﹣a)=,如圖所示:
(2)由(1)可得函數(shù)f(x)的單調(diào)減區(qū)間為(0,),
單調(diào)增區(qū)間為(﹣∞,0),(,+∞).
(3)x>0時,f(x)=x2﹣ax,f(x)的圖象的對稱軸為x=.
由a>0,可得當x∈[0,1]時,
若≥1,即a≥2時,fmin(x)=f(1)=1﹣a.
若0<<1,即0<a<2時,fmin(x)=f()=﹣.
綜上:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個半徑為1的半球材料中截取兩個高度均為的圓柱,其軸截面如圖所示.設(shè)兩個圓柱體積之和為.
(1)求的表達式,并寫出的取值范圍;
(2)求兩個圓柱體積之和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax-1(a>0且a≠1).
(1)若函數(shù)y=f(x)的圖象經(jīng)過點P(3,4),求a的值;
(2)當a變化時,比較f(lg)與f(-2.1)的大小,并寫出比較過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,D、E分別是△ABC的邊BC的三等分點,設(shè) =m, =n,∠BAC= .
(1)用 、 分別表示 , ;
(2)若 =15,| |=3 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:A={x|2x2﹣3ax+a2<0},q:B={x|x2+3x﹣10≤0}.
(1)求A;
(2)當a<0時,若¬p是¬q的必要不充分條件,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)=xlnx.
(1)求曲線f(x)在點(1,f(1))處的切線方程;
(2)對x≥1,f(x)≤m(x2﹣1)成立,求實數(shù)m的最小值;
(3)證明:1n .(n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)頂點在原點,焦點在軸上的拋物線過點,過作拋物線的動弦, ,并設(shè)它們的斜率分別為, .
(Ⅰ)求拋物線的方程;
(Ⅱ)若,求證:直線的斜率為定值,并求出其值;
(III)若,求證:直線恒過定點,并求出其坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列各函數(shù)中,最小值等于2的函數(shù)是( )
A.y=x+
B.y=cosx+ (0<x< )
C.y=
D.y=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義非零向量的“相伴函數(shù)”為(),向量稱為函數(shù)的“相伴向量”(其中為坐標原點),記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為.
(1)已知(),求證:,并求函數(shù)的“相伴向量”模的取值范圍;
(2)已知點()滿足,向量的 “相伴函數(shù)”在處取得最大值,當點運動時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com