【題目】己知函數(shù)f(x)=xlnx.
(1)求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)對x≥1,f(x)≤m(x2﹣1)成立,求實數(shù)m的最小值;
(3)證明:1n .(n∈N*)
【答案】
(1)解: f(1)=ln1=0,f′(1)=ln1+1=1;
故曲線f(x)在點(diǎn)(1,f(1))處的切線方程為y﹣0=x﹣1,
即x﹣y﹣1=0
(2)解:∵x≥1,f(x)≤m(x2﹣1),
∴xlnx≤m(x2﹣1),
∴m(x﹣ )﹣lnx≥0,
設(shè)g(x)=m(x﹣ )﹣lnx,x≥1;
則問題等價于x≥1,g(x)≥0恒成立;
注意到g(1)=0,
∵g′(x)=m(1+ )﹣ ,
∵x≥1,∴ ,
∴當(dāng)m≤0時,g(x)在[1,+∞)上單調(diào)遞減,
∴g(x)≤g(1)=0,故不成立;
當(dāng)m>0時,g′(x)= ,
令h(x)=mx2﹣x+m,
∵△=1﹣4m2,
①若△=1﹣4m2≤0,即m≥ 時;
此時,h(x)≥0,故g′(x)≥0,
故g(x)在[1,+∞)上單調(diào)遞增,
故g(x)≥g(1)=0,故成立;
②若△=1﹣4m2>0,即0<m< 時;
此時,h(x)=0存在兩個不同的實數(shù)根x1,x2,
不妨設(shè)x1<x2,
故x1x2=1,故x1<1<x2,
故g(x)在[1,x2)上單調(diào)遞減,
故g(x)≤g(1)=0,故不成立;
綜上所述,實數(shù)m的最小值為
(3)證明:由(2)知,當(dāng)m= 時,對x≥1,xlnx≤ (x2﹣1)恒成立,
即lnx≤ (當(dāng)且僅當(dāng)x=1時等號成立);
設(shè)i∈N*,則 >1,
故ln < ( +1)( ﹣1) = ,
故 ln < ,
故 ,
即1n .(n∈N*)
【解析】(1)由f(1)=0,f′(1)=1;從而寫出切線方程即可;(2)化簡可得m(x﹣ )﹣lnx≥0,從而令g(x)=m(x﹣ )﹣lnx,x≥1;則問題等價于x≥1,g(x)≥0恒成立;從而求導(dǎo)確定函數(shù)的單調(diào)性及取值情況,從而解得.(3)由(2)知,當(dāng)m= 時,對x≥1,xlnx≤ (x2﹣1)恒成立,從而化簡可得lnx≤ (當(dāng)且僅當(dāng)x=1時等號成立);再設(shè)i∈N* , 則 >1,從而證明.
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的最大(小)值與導(dǎo)數(shù),掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的圖像可以由y=cos2x的圖像先縱坐標(biāo)不變橫坐標(biāo)伸長到原來的2倍,再橫坐標(biāo)不變縱坐標(biāo)伸長到原來的2倍,最后向右平移個單位而得到.
⑴求f(x)的解析式與最小正周期;
⑵求f(x)在x∈(0,π)上的值域與單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga (其中a>0,且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性并給出證明;
(3)若x∈時,函數(shù)f(x)的值域是[0,1],求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:若關(guān)于的方程無實數(shù)根,則;命題:若關(guān)于的方程有兩個不相等的正實數(shù)根,則.
(1)寫出命題的否命題,并判斷命題的真假;
(2)判斷命題“且”的真假,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)作出函數(shù)f(x)的大致圖象;
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)時,由圖象寫出f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是三內(nèi)角A,B,C所對應(yīng)的三邊,已知b2+c2=a2+bc
(1)求角A的大;
(2)若 ,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)
一個盒子中裝有4張卡片,每張卡片上寫有1個數(shù)字,數(shù)字分別是1、2、3、4,現(xiàn)從盒子中隨機(jī)抽取卡片.
(Ⅰ)若一次從中隨機(jī)抽取3張卡片,求3張卡片上數(shù)字之和大于或等于7的概率;
(Ⅱ)若第一次隨機(jī)抽取1張卡片,放回后再隨機(jī)抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字2的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com