已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若是的三個內(nèi)角,且,,又,求邊的長.
(1);(2) 或.
解析試題分析:本題考查三角恒等變換、三角函數(shù)圖象及其性質(zhì)、解三角形等基礎(chǔ)知識;考查學生運算求解能力;考查數(shù)形結(jié)合思想和分類整合思想.第一問,利用兩角差的正弦公式、倍角公式化簡表達式,使之化簡為的形式,再結(jié)合圖象求函數(shù)的單調(diào)遞增區(qū)間;第二問,利用第一問化簡的表達式,由,先求出A角的值,由于A角得到2個值,所以分情況討論,利用正弦定理求BC的長.
試題解析:(1) 1分
3分
4分
令 5分
解得
∴函數(shù)的遞增區(qū)間是 . 6分
(2)由得, ,∵ , ∴ 或 . 8分
(1)當時,由正弦定理得,
; 10分
(2) 當時,由正弦定理得,
. 12分
綜上, 或. 13分
考點:三角恒等變換、三角函數(shù)圖象及其性質(zhì)、解三角形.
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)
(1)求函數(shù)的值域和函數(shù)的單調(diào)遞增區(qū)間;
(2)當,且時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)定義在區(qū)間上的函數(shù)的圖象關(guān)于直線對稱,當
時函數(shù)圖象如圖所示.
(1)求函數(shù)在的表達式;
(2)求方程的解;
(3)是否存在常數(shù)的值,使得在上恒成立;若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,某市新體育公園的中心廣場平面圖如圖所示,在y軸左側(cè)的觀光道曲線段是函數(shù),時的圖象且最高點B(-1,4),在y軸右側(cè)的曲線段是以CO為直徑的半圓弧.⑴試確定A,和的值;⑵現(xiàn)要在右側(cè)的半圓中修建一條步行道CDO(單位:米),在點C與半圓弧上的一點D之間設(shè)計為直線段(造價為2萬元/米),從D到點O之間設(shè)計為沿半圓弧的弧形(造價為1萬元/米).設(shè)(弧度),試用來表示修建步行道的造價預算,并求造價預算的最大值?(注:只考慮步行道的長度,不考慮步行道的寬度)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)的最小正周期為
(1)求的值;
(2)若函數(shù)的圖像是由的圖像向右平移個單位長度得到,求的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某實驗室一天的溫度(單位:)隨時間(單位:)的變化近似滿足函數(shù)關(guān)系;
.
(1)求實驗室這一天上午8時的溫度;
(2)求實驗室這一天的最大溫差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)(),其圖象的兩個相鄰對稱中心的距離為.
(1)求函數(shù)的解析式;
(2)若△的內(nèi)角為所對的邊分別為(其中),且,
,面積為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com