【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)求和的直角坐標方程;
(2)若曲線截直線所得線段的中點坐標為,求的斜率.
【答案】(1)當時,的直角坐標方程為,當時,的直角坐標方程為.(2)
【解析】分析:(1)根據(jù)同角三角函數(shù)關系將曲線的參數(shù)方程化為直角坐標方程,根據(jù)代入消元法將直線的參數(shù)方程化為直角坐標方程,此時要注意分 與兩種情況.(2)將直線參數(shù)方程代入曲線的直角坐標方程,根據(jù)參數(shù)幾何意義得之間關系,求得,即得的斜率.
詳解:(1)曲線的直角坐標方程為.
當時,的直角坐標方程為,
當時,的直角坐標方程為.
(2)將的參數(shù)方程代入的直角坐標方程,整理得關于的方程
.①
因為曲線截直線所得線段的中點在內,所以①有兩個解,設為,,則.
又由①得,故,于是直線的斜率.
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐S﹣ABCD中,底面ABCD是邊長為4的菱形,∠BAD=60°,SA=SD=2,點E是棱AD的中點,點F在棱SC上,且λ,SA//平面BEF.
(1)求實數(shù)λ的值;
(2)求三棱錐F﹣EBC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校組織了一次新高考質量測評,在成績統(tǒng)計分析中,某班的數(shù)學成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:
(1)求該班數(shù)學成績在的頻率及全班人數(shù);
(2)根據(jù)頻率分布直方圖估計該班這次測評的數(shù)學平均分;
(3)若規(guī)定90分及其以上為優(yōu)秀,現(xiàn)從該班分數(shù)在80分及其以上的試卷中任取2份分析學生得分情況,求在抽取的2份試卷中至少有1份優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,曲線由左半橢圓和圓在軸右側的部分連接而成, , 是與的公共點,點, (均異于點, )分別是, 上的動點.
(Ⅰ)若的最大值為,求半橢圓的方程;
(Ⅱ)若直線過點,且, ,求半橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了增強高考與高中學習的關聯(lián)度,考生總成績由統(tǒng)一高考的語文、數(shù)學、外語3個科目成績和高中學業(yè)水平考試3個科目成績組成.保持統(tǒng)一高考的語文、數(shù)學、外語科目不變,分值不變,不分文理科,外語科目提供兩次考試機會.計入總成績的高中學業(yè)水平考試科目,由考生根據(jù)報考高校要求和自身特長,在思想政治、歷史、地理、物理、化學、生物、信息技術七科目中自主選擇三科.
(1)某高校某專業(yè)要求選考科目物理,考生若要報考該校該專業(yè),則有多少種選考科目的選擇;
(2)甲、乙、丙三名同學都選擇了物理、化學、歷史組合,各學科成績達到二級的概率都是0.8,且三人約定如果達到二級不參加第二次考試,達不到二級參加第二次考試,如果設甲、乙、丙參加第二次考試的總次數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義域為的奇函數(shù).
(1)求實數(shù)的值;
(2)若,不等式在上恒成立,求實數(shù)的取值范圍;
(3)若且 上最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是虛數(shù),是實數(shù),且.
(1)求的值以及的實部的取值范圍;
(2)若,求證為純虛數(shù);
(3)在(2)的條件下,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,側面底面ABCD,側棱,,底面ABCD為直角梯形,其中,,,O為AD中點.
求直線PB與平面POC所成角的余弦值.
求B點到平面PCD的距離.
線段PD上是否存在一點Q,使得二面角的余弦值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列五個命題:
①函數(shù)的一條對稱軸是;
②函數(shù)的圖象關于點(,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù)
④若,則,其中
以上四個命題中正確的有 (填寫正確命題前面的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com