【題目】已知公差不為零的等差數(shù)列{an}滿足:a3+a8=20,且a5是a2與a14的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足,求數(shù)列{bn}的前n項(xiàng)和Sn.
【答案】(1)an=2n﹣1(2)Sn=
【解析】
(1)根據(jù)等差數(shù)列的通項(xiàng)公式列方程組,求出首項(xiàng)和公差即可得出通項(xiàng)公式;
(2)利用分組求和法,結(jié)合等比數(shù)列求和公式和等差數(shù)列求和公式得到結(jié)果.
(1)公差d不為零的等差數(shù)列{an}滿足:a3+a8=20,且a5是a2與a14的等比中項(xiàng),
可得2a1+9d=20,a52=a2a14,
即(a1+4d)2=(a1+d)(a1+13d),
解得a1=1,d=2,
則an=1+2(n﹣1)=2n﹣1;
(2)4n+n,
數(shù)列{bn}的前n項(xiàng)和
Sn=(4+16+…+4n)+(1+2+…+n)
n(n+1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線:(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線:.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若曲線與交于,兩點(diǎn),,的中點(diǎn)為,點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,為常數(shù)).
(1)當(dāng)時(shí),若方程有實(shí)根,求的最小值;
(2)設(shè),若在區(qū)間上是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)如圖給出的2005年至2016年我國人口總量及增長率的統(tǒng)計(jì)圖,以下結(jié)論不正確的是
A. 自2005年以來,我國人口總量呈不斷增加趨勢
B. 自2005年以來,我國人口增長率維持在上下波動(dòng)
C. 從2005年后逐年比較,我國人口增長率在2016年增長幅度最大
D. 可以肯定,在2015年以后,我國人口增長率將逐年變大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),如果存在實(shí)數(shù)使得,那么稱為的線性函數(shù).
(1)下面給出兩組函數(shù),判斷是否分別為的線性函數(shù)?并說明理由;
第一組:
第二組::
(2)設(shè),線性函數(shù)為.若等式在上有解,求實(shí)數(shù)的取值范圍;
(3)設(shè),取.線性函數(shù)圖像的最低點(diǎn)為.若對(duì)于任意正實(shí)數(shù)且.試問是否存在最大的常數(shù),使恒成立?如果存在,求出這個(gè)的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)P的極坐標(biāo)為,直線l的極坐標(biāo)方程為.
(1)求直線l的直角坐標(biāo)方程與曲線C的普通方程;
(2)若Q是曲線C上的動(dòng)點(diǎn),M為線段PQ的中點(diǎn),直線l上有兩點(diǎn)A,B,始終滿足|AB|=4,求△MAB面積的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若橢圓的焦點(diǎn)在x軸上,離心率為,依次連接的四個(gè)頂點(diǎn)所得四邊形的面積為40.
(1)試求的標(biāo)準(zhǔn)方程;
(2)若曲線M上任意一點(diǎn)到的右焦點(diǎn)的距離與它到直線的距離相等,直線經(jīng)過的下頂點(diǎn)和右頂點(diǎn),,直線與曲線M相交于點(diǎn)P、Q(點(diǎn)P在第一象限內(nèi),點(diǎn)Q在第四象限內(nèi)),設(shè)的下頂點(diǎn)是B,上頂點(diǎn)是D,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的值域?yàn)?/span>A,.
(1)當(dāng)的為偶函數(shù)時(shí),求的值;
(2) 當(dāng)時(shí), 在A上是單調(diào)遞增函數(shù),求的取值范圍;
(3)當(dāng)時(shí),(其中),若,且函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,在處取 得最小值,試探討應(yīng)該滿足的條件.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com