【題目】對于函數(shù),如果存在實數(shù)使得,那么稱為的線性函數(shù).
(1)下面給出兩組函數(shù),判斷是否分別為的線性函數(shù)?并說明理由;
第一組:
第二組::
(2)設(shè),線性函數(shù)為.若等式在上有解,求實數(shù)的取值范圍;
(3)設(shè),取.線性函數(shù)圖像的最低點為.若對于任意正實數(shù)且.試問是否存在最大的常數(shù),使恒成立?如果存在,求出這個的值;如果不存在,請說明理由.
【答案】(1)第一組是,第二組不是,理由見解析;(2);(3)存在,.
【解析】
(1)將三個函數(shù)的表達式代入,求出,的值;類似方法無法求出,的值;
(2)由已知得,從而在上有解,利用參變分離得,求出函數(shù)的值域,即為實數(shù)的取值范圍,從而得到的取值范圍;
(3)由題意得,,從而,,假設(shè)存在最大的常數(shù),使恒成立,設(shè),從而轉(zhuǎn)化為求的最小值即可.
(1)第一組:
,
解得:,所以,
第一組函數(shù)是,的生成函數(shù).
第二組:設(shè),
即,
則,該方程組無解.
不是,的生成函數(shù).
(2);,,生成函數(shù),
,
在上有解,
在上有解,
,,
。
實數(shù)的取值范圍是.
(3)由題意得,,,則,
故,解得,,,
假設(shè)存在最大的常數(shù),使恒成立.
于是設(shè)
,
設(shè),又,則,即,
設(shè),,
,,在上單調(diào)遞減,從而.
故存在最大的常數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】程序框圖如圖:如果上述程序運行的結(jié)果S=1320,那么判斷框中應填入( )
A.K<10
B.K≤10
C.K<11
D.K≤11
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)拋物線C1:y2=8x的準線與x軸交于點F1 , 焦點為F2 . 以F1 , F2為焦點,離心率為 的橢圓記為C2 . (Ⅰ)求橢圓C2的方程;
(Ⅱ)設(shè)N(0,﹣2),過點P(1,2)作直線l,交橢圓C2于異于N的A、B兩點.
(。┤糁本NA、NB的斜率分別為k1、k2 , 證明:k1+k2為定值.
(ⅱ)以B為圓心,以BF2為半徑作⊙B,是否存在定⊙M,使得⊙B與⊙M恒相切?若存在,求出⊙M的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xoy中,已知點P(0, ),曲線C的參數(shù)方程為 (φ為參數(shù)).以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ= .
(Ⅰ)判斷點P與直線l的位置關(guān)系并說明理由;
(Ⅱ)設(shè)直線l與曲線C的兩個交點分別為A,B,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:f(x2)≥( ﹣1)x2 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知AB⊥平面BCD,BC⊥CD,AD與平面BCD所成的角為30°,且AB=BC=2;
(1)求三棱錐A﹣BCD的體積;
(2)設(shè)M為BD的中點,求異面直線AD與CM所成角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)的定義域是(0, ),f′(x)是它的導函數(shù),且f(x)+tanxf′(x)>0在定義域內(nèi)恒成立,則( )
A.f( )> f( )
B. sin1?f(1)>f( )
C.f( )> f( )
D. f( )> f( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com