已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為F(-
3
,0),且過D(2,0),設點A(1,
1
2
).
(1)求該橢圓的標準方程;
(2)若P是橢圓上的動點,求線段PA中點M的軌跡方程.
分析:(1)由左焦點為F(-
3
,0)
,右頂點為D(2,0),得到橢圓的半長軸a,半焦距c,再求得半短軸b,最后由橢圓的焦點在x軸上求得方程.
(2)橢圓
x2
4
+y2=1
的參數(shù)方程是
x=2cosα
y=sinα
,α為參數(shù),故P(2cosα,sinα),設線段PA的中點為M(x,y),由A(1,
1
2
),P(2cosα,sinα),知x=
1+cosα
2
,y=
1
2
+sinα
2
,由此能求出線段PA中點M的軌跡方程.
解答:解:(1)∵在平面直角坐標系中的一個橢圓,
它的中心在原點,左焦點為F(-
3
,0),且過D(2,0),
∴橢圓的半長軸a=2,半焦距c=
3
,則半短軸b=1.
∵橢圓的焦點在x軸上,
∴橢圓的標準方程為
x2
4
+y2=1

(2)橢圓
x2
4
+y2=1
的參數(shù)方程是:
x=2cosα
y=sinα
,α為參數(shù).
∴P(2cosα,sinα),
設線段PA的中點為M(x,y),
∵A(1,
1
2
),P(2cosα,sinα),
∴x=
1+cosα
2
,y=
1
2
+sinα
2
,
∴cosα=2x-1,
sinα=2y-
1
2
,
∴(2x-1)2+(2y-
1
2
2=1.
∴線段PA中點M的軌跡方程是(2x-1)2+(2y-
1
2
2=1.
點評:本題主要考查橢圓標準方程,簡單幾何性質(zhì),直線與橢圓的位置關系等基礎知識.考查運算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

選修4-4:坐標系與參數(shù)方程
已知在平面直角坐標系xOy內(nèi),點P(x,y)在曲線C:
x=1+cosθ
y=sinθ
為參數(shù),θ∈R)上運動.以Ox為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+
π
4
)=0

(Ⅰ)寫出曲線C的標準方程和直線l的直角坐標方程;
(Ⅱ)若直線l與曲線C相交于A、B兩點,點M在曲線C上移動,試求△ABM面積的最大值,并求此時M點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為F(-
3
,0)
,且過點D(2,0).
(1)求該橢圓的標準方程;
(2)設點A(1,
1
2
)
,若P是橢圓上的動點,求線段PA的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(坐標系與參數(shù)方程選做題)已知在平面直角坐標系xoy中,圓C的參數(shù)方程為
x=
3
+3cosθ
y=1+3sinθ
,(θ為參數(shù)),以ox為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+
π
6
)
=0,則圓C截直線l所得的弦長為
4
2
4
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在平面直角坐標系中,O(0,0),A(1,-2),B(1,1),C(2,-1),動點M(x,y)滿足條件
-2≤
OM
OA
≤2
1≤
OM
OB
≤2
,則z=
OM
OC
的最大值為( 。
A、-1B、0C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在平面直角坐標系xOy中的一個橢圓,它的中心在原點,左焦點為F(-
3
,0)
,右頂點為D(2,0),設點A(1,
1
2
)

(Ⅰ)求該橢圓的標準方程;
(Ⅱ)若P是橢圓上的動點,求線段PA中點M的軌跡方程;
(Ⅲ)是否存在直線l,滿足l過原點O并且交橢圓于點B、C,使得△ABC面積為1?如果存在,寫出l的方程;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案