已知在平面直角坐標(biāo)系中,O(0,0),A(1,-2),B(1,1),C(2,-1),動(dòng)點(diǎn)M(x,y)滿(mǎn)足條件
-2≤
OM
OA
≤2
1≤
OM
OB
≤2
,則z=
OM
OC
的最大值為(  )
A、-1B、0C、3D、4
分析:利用向量的坐標(biāo)求法求出各個(gè)向量的坐標(biāo),利用向量的數(shù)量積公式求出各個(gè)數(shù)量積代入已知不等式得到M的坐標(biāo)滿(mǎn)足的不等式,將
OM
OC
的值用不等式組中的式子表示,利用不等式的性質(zhì)求出范圍.
解答:解:設(shè)M(x,y)則
OM
=(x,y),
OA
=(1,-2),
OB
=(1,1)
,
OC
=(2,-1)

-2≤
OM
OA
≤2
1≤
OM
OB
≤2
,∴
-2≤x-2y≤2
1≤x+y≤2

OM
OC
=2x-y=(x-2y)+(x+y)
,-1≤
OM
OC
≤4

故選D.
點(diǎn)評(píng):本題考查向量的坐標(biāo)形式的數(shù)量積公式、不等式的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系xOy內(nèi),點(diǎn)P(x,y)在曲線(xiàn)C:
x=1+cosθ
y=sinθ
為參數(shù),θ∈R)上運(yùn)動(dòng).以O(shè)x為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為ρcos(θ+
π
4
)=0

(Ⅰ)寫(xiě)出曲線(xiàn)C的標(biāo)準(zhǔn)方程和直線(xiàn)l的直角坐標(biāo)方程;
(Ⅱ)若直線(xiàn)l與曲線(xiàn)C相交于A(yíng)、B兩點(diǎn),點(diǎn)M在曲線(xiàn)C上移動(dòng),試求△ABM面積的最大值,并求此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為F(-
3
,0)
,且過(guò)點(diǎn)D(2,0).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)A(1,
1
2
)
,若P是橢圓上的動(dòng)點(diǎn),求線(xiàn)段PA的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)已知在平面直角坐標(biāo)系xoy中,圓C的參數(shù)方程為
x=
3
+3cosθ
y=1+3sinθ
,(θ為參數(shù)),以ox為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為ρcos(θ+
π
6
)
=0,則圓C截直線(xiàn)l所得的弦長(zhǎng)為
4
2
4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在平面直角坐標(biāo)系xOy中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為F(-
3
,0)
,右頂點(diǎn)為D(2,0),設(shè)點(diǎn)A(1,
1
2
)

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若P是橢圓上的動(dòng)點(diǎn),求線(xiàn)段PA中點(diǎn)M的軌跡方程;
(Ⅲ)是否存在直線(xiàn)l,滿(mǎn)足l過(guò)原點(diǎn)O并且交橢圓于點(diǎn)B、C,使得△ABC面積為1?如果存在,寫(xiě)出l的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案