以O為原點,
所在直線為
軸,建立如 所示的坐標系。設
,點F的坐標為
,
,點G的坐標為
。
(1)求
關于
的函數(shù)
的表達式,判斷函數(shù)
的單調性,并證明你的判斷;
(2)設ΔOFG的面積
,若以O為中心,F(xiàn)為焦點的橢圓經(jīng)過點G,求當
取最小值時橢圓的方程;
(3)在(2)的條件下,若點P的坐標為
,C、D是橢圓上的兩點,且
,求實數(shù)
的取值范圍。
(1)
函數(shù)
在
是單調遞增函數(shù)。
(2)橢圓方程為:
(3)實數(shù)
的取值范圍為
。
(1)由題意知
,則
函數(shù)
在
是單調遞增函數(shù)。(證明略)(4分)
(2)由
,
點G
,
因
在
上是增函數(shù),當
時,
取最小值,此時
,
依題意橢圓的中心在原點,一個焦點F(3,0),設橢圓方程為
,由G點坐標代入與焦點F(3,0),可得橢圓方程為:
(9分)
(3)設
,則
,
由
,
,
因點C、D在橢圓上,代入橢圓方程得,
,消去
,
得
,又
,
則實數(shù)
的取值范圍為
。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)已知焦點在
軸上,離心率為
的橢圓的一個頂點是拋物線
的焦點,過橢圓右焦點
的直線
交橢圓于
兩點,交
軸于點
,且
,(1)求橢圓方程;(2)證明:
為定值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知拋物線
的切線垂直于直線
,則切線方程為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題共12分)已知橢圓E:
的焦點坐
標為
(
),點M(
,
)在橢圓E上
(1)求橢圓E的方程;(2)O為坐標原點,⊙
的任意一條切線與橢圓E有兩個交點
,
且
,求⊙
的半徑。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(1)P, Q中點M的軌跡方程;
(2)
的最小值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓的中心是坐標原點,焦點在
軸上,離心率
,已知點
到這個橢圓上的點的最遠距離是4,求這個橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若動圓與圓(x-2)2+y2=1外切,又與直線x+1=0相切,則動圓圓心的軌跡方程為__________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓與雙曲線有共同的焦點F
(-4,0)、F
(4,0),并且橢圓和長軸長是雙曲線實軸長的2倍,試求橢圓與雙曲線交點的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如果拋物線
和圓
,它們在
軸上方的交點為
,那么當
為何值時,線段
的中點
在直線
上?
查看答案和解析>>