【題目】對(duì)于數(shù)列,稱(chēng)(其中)為數(shù)列的前k項(xiàng)“波動(dòng)均值”.若對(duì)任意的,都有,則稱(chēng)數(shù)列為“趨穩(wěn)數(shù)列”.

1)若數(shù)列1,,2為“趨穩(wěn)數(shù)列”,求的取值范圍;

2)若各項(xiàng)均為正數(shù)的等比數(shù)列的公比,求證:是“趨穩(wěn)數(shù)列”;

3)已知數(shù)列的首項(xiàng)為1,各項(xiàng)均為整數(shù),前項(xiàng)的和為. 且對(duì)任意,都有, 試計(jì)算:).

【答案】12)證明見(jiàn)解析,(3)

【解析】

1)由新定義可得,解不等式可得的范圍;(2)運(yùn)用等比數(shù)列的通項(xiàng)公式和求和公式,結(jié)合新定義,運(yùn)用不等式的性質(zhì)即可得證;(3)由任意,,都有,可得,由等比數(shù)列的通項(xiàng)公式,可得,結(jié)合新定義和二項(xiàng)式定理,化簡(jiǎn)整理即可得到所求值.

1)由題意,即,

解得 ,

2)由已知,設(shè),因,故對(duì)任意的,都有,

,,,,,

,

即對(duì)任意的,都有,故是“趨穩(wěn)數(shù)列”,

(3) 當(dāng)時(shí),

當(dāng)時(shí),

同理,,

所以

所以

因?yàn)?/span>,且,所以, 從而,

所以

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐S-ABCD的底面為正方形,ACBD交于E,M,N分別為SDSA的中點(diǎn),.

1)求證:平面平面SBD

2)求直線(xiàn)BD與平面CMN所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)單調(diào)函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,如果單調(diào)函數(shù)使得函數(shù)的值域也是,則稱(chēng)函數(shù)是函數(shù)的一個(gè)保值域函數(shù).已知定義域?yàn)?/span>的函數(shù),函數(shù)互為反函數(shù),且的一個(gè)保值域函數(shù)”,的一個(gè)保值域函數(shù),則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),且(其中e是自然對(duì)數(shù)的底數(shù)).

(Ⅰ)若,求的單調(diào)區(qū)間;

(Ⅱ)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中,、分別是棱、的中點(diǎn),、分別是線(xiàn)段上的點(diǎn),則與平面平行的直線(xiàn)有(

A.0B.1C.2D.無(wú)數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近來(lái)天氣變化無(wú)常,陡然升溫、降溫幅度大于的天氣現(xiàn)象出現(xiàn)增多.陡然降溫幅度大于容易引起幼兒傷風(fēng)感冒疾病.為了解傷風(fēng)感冒疾病是否與性別有關(guān),在某婦幼保健院隨機(jī)對(duì)人院的名幼兒進(jìn)行調(diào)查,得到了如下的列聯(lián)表,若在全部名幼兒中隨機(jī)抽取人,抽到患傷風(fēng)感冒疾病的幼兒的概率為,

(1)請(qǐng)將下面的列聯(lián)表補(bǔ)充完整;

患傷風(fēng)感冒疾病

不患傷風(fēng)感冒疾病

合計(jì)

25

20

合計(jì)

100

(2)能否在犯錯(cuò)誤的概率不超過(guò)的情況下認(rèn)為患傷風(fēng)感冒疾病與性別有關(guān)?說(shuō)明你的理由;

(3)已知在患傷風(fēng)感冒疾病的名女性幼兒中,名又患黃痘病.現(xiàn)在從患傷風(fēng)感冒疾病的名女性中,選出名進(jìn)行其他方面的排查,記選出患黃痘病的女性人數(shù)為,的分布列以及數(shù)學(xué)期望.下面的臨界值表供參考:

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù),如果滿(mǎn)足:對(duì)任意,存在常數(shù),都有成立,則稱(chēng)上的有界函數(shù),其中稱(chēng)為函數(shù)的上界.

1)設(shè),判斷上是否為有界函數(shù),若是,請(qǐng)說(shuō)明理由,并寫(xiě)出的所有上界的集合;若不是,也請(qǐng)說(shuō)明理由;

2)若函數(shù)上是以為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年女排世界杯中,中國(guó)女子排球隊(duì)以11連勝的優(yōu)異戰(zhàn)績(jī)成功奪冠,為祖國(guó)母親七十華誕獻(xiàn)上了一份厚禮.排球比賽采用53勝制,前4局比賽采用25分制,每個(gè)隊(duì)只有贏得至少25分,并同時(shí)超過(guò)對(duì)方2分時(shí),才勝1局;在決勝局(第五局)采用15分制,每個(gè)隊(duì)只有贏得至少15分,并領(lǐng)先對(duì)方2分為勝.在每局比賽中,發(fā)球方贏得此球后可得1分,并獲得下一球的發(fā)球權(quán),否則交換發(fā)球權(quán),并且對(duì)方得1.現(xiàn)有甲乙兩隊(duì)進(jìn)行排球比賽:

1)若前三局比賽中甲已經(jīng)贏兩局,乙贏一局.接下來(lái)兩隊(duì)贏得每局比賽的概率均為,求甲隊(duì)最后贏得整場(chǎng)比賽的概率;

2)若前四局比賽中甲、乙兩隊(duì)已經(jīng)各贏兩局比賽.在決勝局(第五局)中,兩隊(duì)當(dāng)前的得分為甲、乙各14分,且甲已獲得下一發(fā)球權(quán).若甲發(fā)球時(shí)甲贏1分的概率為,乙發(fā)球時(shí)甲贏1分的概率為,得分者獲得下一個(gè)球的發(fā)球權(quán).設(shè)兩隊(duì)打了個(gè)球后甲贏得整場(chǎng)比賽,求x的取值及相應(yīng)的概率px.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)不相等的非零向量,兩組向量均由2個(gè)3個(gè)排列而成,記,表示所有可能取值中的最小值,則下列命題中

15個(gè)不同的值;(2)若無(wú)關(guān);(3)若,則無(wú)關(guān);(4)若,則;(5)若,,則的夾角為.正確的是( 。

A.1)(2B.2)(4C.3)(5D.1)(4

查看答案和解析>>

同步練習(xí)冊(cè)答案