若a+i=
b+i
i
,其中i為虛數(shù)單位,a,b為實數(shù),則a+b=
 
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:通過復(fù)數(shù)的除法運算法則,以及復(fù)數(shù)的相等的充要條件求出a,b即可.
解答: 解:a+i=
b+i
i
=
(b+i)i
i•i
=1-bi,
由復(fù)數(shù)相等的充要條件可得:
a=1,b=-1,
∴a+b=0.
故答案為:0.
點評:本題考查復(fù)數(shù)代數(shù)形式的混合運算,復(fù)數(shù)相等的充要條件的應(yīng)用,基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(
2
,
2
2
)且離心率為
3
2

(1)求橢圓C的方程;
(2)已知A、B是橢圓C的左、右頂點,動點M滿足MB⊥AB,連接AM交橢圓于點P,在x軸上是否存在異于點A、B的定點Q,使得以MP為直徑的圓經(jīng)過直線BP和直線MQ的交點,若存在,求出Q點,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,圓ρ=2cosθ的直徑等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα=
1
7
,cos(α+β)=-
11
14
,且α∈(0,
π
2
),α+β∈(
π
2
,π),則cosβ的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知由樣本數(shù)據(jù)點集{(xi,yi)|i=1,2,…,n}求得的回歸直線方程為
y
=1.23x+0.08,且
.
x
=4.若去掉兩個數(shù)據(jù)點(4.1,5.7)和(3.9,4.3)后重新求得的回歸直線?的斜率估計值為1.2,則此回歸直線?的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復(fù)數(shù)z=1+
1
i
的模為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于函數(shù)f(x)=|2sinx+m|(m為常數(shù)且m∈R),有下列結(jié)論:
①m=0是函數(shù)f(x)周期為π的充要條件;
②m>0是函數(shù)f(x)周期為2π的充分不必要條件;
③存在唯一的一組常數(shù)m、k,使得函數(shù)g(x)=f(x)-k(x>0)的零點從小到大排列成公差為2π的等差數(shù)列;
④存在常數(shù)m、k,使得函數(shù)g(x)=f(x)-k(x>0)的零點從小到大排列成公差為
3
的等差數(shù)列;
⑤存在常數(shù)m、k,使得函數(shù)g(x)=f(x)(x>0)的零點從小到大排列成公差為
π
3
的等差數(shù)列;
其中正確結(jié)論的序號為
 
(把你認為正確結(jié)論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)A是整數(shù)集的一個非空子集,對于k∈A,如果k-1∉A且k+1∉A,那么稱k是A的一個“孤立元”,給定S={1,2,3,4,5,6,7,8},則S的3個元素構(gòu)成的所有集合中,其元素都是“孤立元”的集合個數(shù)是( 。
A、6B、15C、20D、25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)全集U=R,A={x|
x
x+3
<0},B={x|x<-1},則如圖中陰影部分表示的集合為( 。
A、{x|x>0}
B、{x|-3<x<-1}
C、{x|-3<x<0}
D、{x|x<-1}

查看答案和解析>>

同步練習冊答案