【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,對任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)答案不唯一,見解析;(2)

【解析】

1)先由題意得到定義域,對函數(shù)求導(dǎo),分別討論兩種情況,即可得出結(jié)果;

2)因?yàn)?/span>,由(1)得到函數(shù)上單調(diào)遞增,不妨設(shè),則可化為,令,則上的減函數(shù),對求導(dǎo),根據(jù)函數(shù)單調(diào)性,即可得出結(jié)果.

1)∵依題意可知:函數(shù)的定義域?yàn)?/span>,

,

當(dāng)時(shí),恒成立,所以上單調(diào)遞增.

當(dāng)時(shí),由;由;

綜上可得當(dāng)時(shí),上單調(diào)遞增;

當(dāng)時(shí),上單調(diào)遞減;在上單調(diào)遞增.

2)因?yàn)?/span>,由(1)知,函數(shù)上單調(diào)遞增,

不妨設(shè),則,

可化為

設(shè),則

所以上的減函數(shù),

上恒成立,等價(jià)于上恒成立,

設(shè),所以,

,所以,所以函數(shù)上是增函數(shù),

所以(當(dāng)且僅當(dāng)時(shí)等號成立)

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長為,頂點(diǎn)在平面上的射影為,有,且.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點(diǎn)使得⊥平面,如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,并且,數(shù)列滿足:,,記數(shù)列的前項(xiàng)和為

1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;

2)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;

3)記集合,若的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了配合今年上海迪斯尼游園工作,某單位設(shè)計(jì)了統(tǒng)計(jì)人數(shù)的數(shù)學(xué)模型:以表示第個(gè)時(shí)刻進(jìn)入園區(qū)的人數(shù);以表示第個(gè)時(shí)刻離開園區(qū)的人數(shù).設(shè)定以分鐘為一個(gè)計(jì)算單位,上午點(diǎn)分作為第個(gè)計(jì)算人數(shù)單位,即;點(diǎn)分作為第個(gè)計(jì)算單位,即;依次類推,把一天內(nèi)從上午點(diǎn)到晚上點(diǎn)分分成個(gè)計(jì)算單位(最后結(jié)果四舍五入,精確到整數(shù)).

1)試計(jì)算當(dāng)天點(diǎn)至點(diǎn)這一小時(shí)內(nèi),進(jìn)入園區(qū)的游客人數(shù)、離開園區(qū)的游客人數(shù)各為多少?

2)假設(shè)當(dāng)日園區(qū)游客總?cè)藬?shù)達(dá)到或超過萬時(shí),園區(qū)將采取限流措施.該單位借助該數(shù)學(xué)模型知曉當(dāng)天點(diǎn)(即)時(shí),園區(qū)總?cè)藬?shù)會(huì)達(dá)到最高,請問當(dāng)日是否要采取限流措施?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是坐標(biāo)軸上兩點(diǎn),動(dòng)點(diǎn)滿足直線的斜率之積為(其中為常數(shù),且.的軌跡為曲線.

1)求的方程,并說明是什么曲線;

2)過點(diǎn)斜率為的直線與曲線交于點(diǎn),點(diǎn)在曲線上,且,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線、與曲線分別相交于點(diǎn)、、,我們將四邊形稱為曲線的內(nèi)接四邊形.

1)若直線將單位圓分成長度相等的四段弧,求的值;

2)若直線與圓分別交于點(diǎn)、,求證:四邊形為正方形;

3)求證:橢圓的內(nèi)接正方形有且只有一個(gè),并求該內(nèi)接正方形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的焦距為,且右焦點(diǎn)F與短軸的兩個(gè)端點(diǎn)組成一個(gè)正三角形.若直線l與橢圓C交于、,且在橢圓C上存在點(diǎn)M,使得:(其中O為坐標(biāo)原點(diǎn)),則稱直線l具有性質(zhì)H.

1)求橢圓C的方程;

2)若直線l垂直于x軸,且具有性質(zhì)H,求直線l的方程;

3)求證:在橢圓C上不存在三個(gè)不同的點(diǎn)P、QR,使得直線、都具有性質(zhì)H.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),(為正整數(shù))都在函數(shù)的圖象上.

1)若數(shù)列是等差數(shù)列,證明:數(shù)列是等比數(shù)列;

2)設(shè),過點(diǎn)的直線與兩坐標(biāo)軸所圍成的三角形面積為,試求最小的實(shí)數(shù),使對一切正整數(shù)恒成立;

3)對(2)中的數(shù)列,對每個(gè)正整數(shù),在之間插入個(gè)3,得到一個(gè)新的數(shù)列,設(shè)是數(shù)列的前項(xiàng)和,試探究2016是否是數(shù)列中的某一項(xiàng),寫出你探究得到的結(jié)論并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】李克強(qiáng)總理在很多重大場合都提出大眾創(chuàng)業(yè),萬眾創(chuàng)新.某創(chuàng)客,白手起家,2015年一月初向銀行貸款十萬元做創(chuàng)業(yè)資金,每月獲得的利潤是該月初投入資金的.每月月底需要交納房租和所得稅共為該月全部金額(包括本金和利潤)的,每月的生活費(fèi)等開支為3000元,余款全部投入創(chuàng)業(yè)再經(jīng)營.如此每月循環(huán)繼續(xù).

1)問到2015年年底(按照12個(gè)月計(jì)算),該創(chuàng)客有余款多少元?(結(jié)果保留至整數(shù)元)

2)如果銀行貸款的年利率為,問該創(chuàng)客一年(12個(gè)月)能否還清銀行貸款?

查看答案和解析>>

同步練習(xí)冊答案