【題目】若將函數(shù)f(x)=sin(2x+ )的圖象向右平移個(gè)單位長(zhǎng)度,可以使f(x)成為奇函數(shù),則的最小值為(
A.
B.
C.
D.

【答案】A
【解析】解:將函數(shù)f(x)=sin(2x+ )的圖象向右平移個(gè)單位長(zhǎng)度,
所得函數(shù)的圖象對(duì)應(yīng)的解析式為y=sin[2(x﹣)+ ]=sin(2x+ ﹣2),
根據(jù)y=sin(2x+ ﹣2)為奇函數(shù),則 ﹣2=kπ,k∈Z,
的最小值為 ,
故選:A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在區(qū)間內(nèi)單調(diào)遞增,則可以是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面, 垂直于,為棱上的點(diǎn),.

(1)若為棱的中點(diǎn),求證://平面

(2)當(dāng)時(shí),求平面與平面所成的銳二面角的余弦值;

(3)在第(2)問(wèn)條件下,設(shè)點(diǎn)是線(xiàn)段上的動(dòng)點(diǎn),與平面所成的角為,求當(dāng)取最大值時(shí)點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于函數(shù)的判斷正確的是( )

的解集是;②當(dāng)時(shí)有極小值,當(dāng)時(shí)有極大值;

沒(méi)有最小值,也沒(méi)有最大值.

A. ①③ B. ①②③ C. D. ①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】渦陽(yáng)縣某華為手機(jī)專(zhuān)賣(mài)店對(duì)市民進(jìn)行華為手機(jī)認(rèn)可度的調(diào)查,在已購(gòu)買(mǎi)華為手機(jī)的名市民中,隨機(jī)抽取名,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻數(shù)分布表和頻率分布直方圖如圖:

分組(歲)

頻數(shù)

合計(jì)

1)求頻數(shù)分布表中的值,并補(bǔ)全頻率分布直方圖;

2)在抽取的這名市民中,從年齡在、內(nèi)的市民中用分層抽樣的方法抽取人參加華為手機(jī)宣傳活動(dòng),現(xiàn)從這人中隨機(jī)選取人各贈(zèng)送一部華為手機(jī),求這人中恰有人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且(2b﹣a)cosC=ccosA.
(1)求角C的大;
(2)若sinA+sinB=2 sinAsinB,c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市舉行中學(xué)生詩(shī)詞大賽,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間(30150]內(nèi),其頻率分布直方圖如圖.則獲得復(fù)賽資格的人數(shù)為()

A.640B.520C.280D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù).當(dāng)x>0時(shí),f(x)=x2﹣4x,則不等式f(x)>x 的解集用區(qū)間表示為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)設(shè)0x,求函數(shù)yx32x)的最大值;

2)解關(guān)于x的不等式x2-a+1x+a0

查看答案和解析>>

同步練習(xí)冊(cè)答案