【題目】平行四邊形ABCD中,∠A,2ABBCE,F分別是BCAD的中點.將四邊形DCEF沿著EF折起,使得平面ABEF⊥平面DCEF,得到三棱柱AFDBEC.

1)證明:DBEF;

2)若AB2,求三棱柱AFDBEC的體積.

【答案】1)證明見解析;(23

【解析】

1)取EF的中點O,連接OD,OB,ED,FB,可得△BEF,△DEF是等邊三角形.可得ODEF,OBEF,由直線與平面垂直的判定可得EF⊥平面BOD,進一步得到DBEF;

2)三棱柱AFDBEC可分為四棱錐DABEF與三棱錐BCDE.由(1)知ODEF,結(jié)合面面垂直的性質(zhì)可得OD⊥平面ABEF,同理可證OB⊥平面DCEF,分別求出兩個棱錐的體積,作和得答案.

1)證明:取EF的中點O,連接ODOB,EDFB,

可得△BEF,△DEF是等邊三角形.

ODEF,OBEF,

ODOBO,∴EF⊥平面BOD,

BD平面BOD,

DBEF

2)解:三棱柱AFDBEC可分為四棱錐DABEF與三棱錐BCDE.

由(1)知ODEF,而平面ABEF⊥平面DCEF,且交線為EF

OD⊥平面ABEF.

同理可證OB⊥平面DCEF.

四棱錐DABEF的體積,

三棱錐BCDE的體積,

∴三棱柱AFDBEC的體積V2+13.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,正方形與梯形所在平面互相垂直,已知,,.

(1)求證:平面;

(2)求平面與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,為等腰直角三角形,,DBC的中點.

1)求證:平面;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,已知a1+a312,a2+a418,nN*.

1)求數(shù)列{an}的通項公式;

2)求a3+a6+a9++a3n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20201月底因新型冠狀病毒感染的肺炎疫情形勢嚴峻,避免外出是減少相互交叉感染最有效的方式.在家中適當鍛煉,合理休息,能夠提高自身免疫力,抵抗該種病毒.某小區(qū)為了調(diào)查家居民的運動情況,從該小區(qū)隨機抽取了100位成年人,記錄了他們某天的鍛煉時間,其頻率分布直方圖如下:

1)求a的值,并估計這100位居民鍛煉時間的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)小張是該小區(qū)的一位居民,他記錄了自己7天的鍛煉時長:

序號n

1

2

3

4

5

6

7

鍛煉時長m(單位:分鐘)

10

15

12

20

30

25

35

)根據(jù)數(shù)據(jù)求m關(guān)于n的線性回歸方程;

)若是(1)中的平均值),則當天被稱為有效運動日.估計小張家第8天是否是有效運動日?

附;在線性回歸方程中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,是等邊三角形,點在棱上,平面平面.

1)求證:平面平面

2)若,求直線與平面所成角的正弦值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓長軸長為4,右焦點到左頂點的距離為3

1)求橢圓的方程;

2)設(shè)過原點的直線交橢圓于兩點(不在坐標軸上),連接并延長交橢圓于點,若,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘數(shù)學(xué)家阿波羅尼奧斯在他的著作《圓錐曲線論》中記載了用平面切制圓錐得到圓錐曲線的方法.如圖,將兩個完全相同的圓錐對頂放置(兩圓錐的軸重合),已知兩個圓錐的底面半徑為1,母線長均為,記過圓錐軸的平面ABCD為平面與兩個圓錐面的交線為AC、BD),用平行于的平面截圓錐,該平面與兩個圓錐側(cè)面的截線即為雙曲線E的一部分,且雙曲線E的兩條漸近線分別平行于ACBD,則雙曲線E的離心率為(

A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若處的切線為

(Ⅰ)求實數(shù),的值;

(Ⅱ)若不等式對任意恒成立,求的取值范圍;

(Ⅲ)設(shè)其中,證明:

查看答案和解析>>

同步練習冊答案