【題目】設(shè)橢圓長(zhǎng)軸長(zhǎng)為4,右焦點(diǎn)到左頂點(diǎn)的距離為3

1)求橢圓的方程;

2)設(shè)過(guò)原點(diǎn)的直線交橢圓于兩點(diǎn)(不在坐標(biāo)軸上),連接并延長(zhǎng)交橢圓于點(diǎn),若,求四邊形面積的最大值.

【答案】1;(2

【解析】

1)根據(jù)題意,列出的方程組,求解即可求得結(jié)果;

2)設(shè)出直線方程,聯(lián)立橢圓方程,結(jié)合韋達(dá)定理,用參數(shù)表示的面積;根據(jù)向量關(guān)系,求得,再利用對(duì)勾函數(shù)單調(diào)性求面積關(guān)于參數(shù)的函數(shù)的最大值即可.

1)由題意可得

所以橢圓方程為

2)由(1)知,

設(shè)直線的方程為,

聯(lián)立

設(shè),

,

因?yàn)?/span>,

故可得四邊形為平行四邊形,則,

設(shè),,

,

,故可得,

當(dāng)時(shí),恒成立,故單調(diào)遞增,

上單調(diào)遞減,

所以當(dāng),即時(shí),

四邊形的面積取得最大值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱柱平面內(nèi)一點(diǎn),點(diǎn)在直線上運(yùn)動(dòng),若直線所成角的最小值與直線和平面所成角的最大值相等,則滿足條件的點(diǎn)的軌跡是(

A.直線的一部分B.圓的一部分C.拋物線的一部分D.橢圓的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 函數(shù).若關(guān)于的方程個(gè)互異的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是 ( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平行四邊形ABCD中,∠A,2ABBCE,F分別是BC,AD的中點(diǎn).將四邊形DCEF沿著EF折起,使得平面ABEF⊥平面DCEF,得到三棱柱AFDBEC.

1)證明:DBEF;

2)若AB2,求三棱柱AFDBEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)fx)的單調(diào)性;

2)若函數(shù)gx)=fx)﹣lnx2個(gè)不同的極值點(diǎn)x1,x2x1x2),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校擬從甲、乙兩名同學(xué)中選一人參加疫情知識(shí)問答競(jìng)賽,于是抽取了甲、乙兩人最近同時(shí)參加校內(nèi)競(jìng)賽的十次成績(jī),將統(tǒng)計(jì)情況繪制成如圖所示的折線圖.根據(jù)該折線圖,下面結(jié)論正確的是(

A.甲、乙成績(jī)的中位數(shù)均為7

B.乙的成績(jī)的平均分為6.8

C.甲從第四次到第六次成績(jī)的下降速率要大于乙從第四次到第五次的下降速率

D.甲的成績(jī)的方差小于乙的成績(jī)的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)討論單調(diào)性;

(Ⅱ)當(dāng)時(shí),設(shè)函數(shù)存在兩個(gè)零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)交于、兩點(diǎn),中點(diǎn)為,的垂直平分線交、.為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系.

1)求的直角坐標(biāo)方程與點(diǎn)的直角坐標(biāo);

2)求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案