【題目】設(shè)橢圓長(zhǎng)軸長(zhǎng)為4,右焦點(diǎn)到左頂點(diǎn)的距離為3.
(1)求橢圓的方程;
(2)設(shè)過(guò)原點(diǎn)的直線交橢圓于兩點(diǎn)(不在坐標(biāo)軸上),連接并延長(zhǎng)交橢圓于點(diǎn),若,求四邊形面積的最大值.
【答案】(1);(2)
【解析】
(1)根據(jù)題意,列出的方程組,求解即可求得結(jié)果;
(2)設(shè)出直線方程,聯(lián)立橢圓方程,結(jié)合韋達(dá)定理,用參數(shù)表示的面積;根據(jù)向量關(guān)系,求得,再利用對(duì)勾函數(shù)單調(diào)性求面積關(guān)于參數(shù)的函數(shù)的最大值即可.
(1)由題意可得,
所以橢圓方程為.
(2)由(1)知,
設(shè)直線的方程為,
聯(lián)立得.
設(shè),,
則,.
因?yàn)?/span>,
故可得四邊形為平行四邊形,則,
又,
故.
設(shè),,
則,
令,故可得,
當(dāng)時(shí),恒成立,故在單調(diào)遞增,
故在上單調(diào)遞減,
所以當(dāng),即時(shí),
四邊形的面積取得最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱平面是內(nèi)一點(diǎn),點(diǎn)在直線上運(yùn)動(dòng),若直線和所成角的最小值與直線和平面所成角的最大值相等,則滿足條件的點(diǎn)的軌跡是( )
A.直線的一部分B.圓的一部分C.拋物線的一部分D.橢圓的一部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 函數(shù).若關(guān)于的方程有個(gè)互異的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是 ( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行四邊形ABCD中,∠A,2AB=BC,E,F分別是BC,AD的中點(diǎn).將四邊形DCEF沿著EF折起,使得平面ABEF⊥平面DCEF,得到三棱柱AFD﹣BEC.
(1)證明:DB⊥EF;
(2)若AB=2,求三棱柱AFD﹣BEC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)g(x)=f(x)﹣lnx有2個(gè)不同的極值點(diǎn)x1,x2(x1<x2),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校擬從甲、乙兩名同學(xué)中選一人參加疫情知識(shí)問答競(jìng)賽,于是抽取了甲、乙兩人最近同時(shí)參加校內(nèi)競(jìng)賽的十次成績(jī),將統(tǒng)計(jì)情況繪制成如圖所示的折線圖.根據(jù)該折線圖,下面結(jié)論正確的是( )
A.甲、乙成績(jī)的中位數(shù)均為7
B.乙的成績(jī)的平均分為6.8
C.甲從第四次到第六次成績(jī)的下降速率要大于乙從第四次到第五次的下降速率
D.甲的成績(jī)的方差小于乙的成績(jī)的方差
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(Ⅰ)討論單調(diào)性;
(Ⅱ)當(dāng)時(shí),設(shè)函數(shù)存在兩個(gè)零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)與交于、兩點(diǎn),中點(diǎn)為,的垂直平分線交于、.以為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系.
(1)求的直角坐標(biāo)方程與點(diǎn)的直角坐標(biāo);
(2)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com