【題目】在平面直角坐標(biāo)系中,已知橢圓C:(>>0)的右焦點(diǎn)為F(1,0),且過(guò)點(diǎn)(1,),過(guò)點(diǎn)F且不與軸重合的直線與橢圓C交于A,B兩點(diǎn),點(diǎn)P在橢圓上,且滿足.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若,求直線AB的方程.
【答案】(1) ;(2) .
【解析】
(1)代入橢圓方程,結(jié)合關(guān)系,即可求出橢圓標(biāo)準(zhǔn)方程;
(2)設(shè)直線方程,與橢圓聯(lián)立,利用韋達(dá)定理,得出兩點(diǎn)的坐標(biāo)關(guān)系,進(jìn)而求出點(diǎn)坐標(biāo),代入橢圓方程,即可求出直線方程.
(1)由題意可知,=1,且
又因?yàn)?/span>,
解得,,
所以橢圓C的標(biāo)準(zhǔn)方程為;
(2)若直線AB的斜率不存在,則易得,,
∴,得P(,0),
顯然點(diǎn)P不在橢圓上,舍去;
因此設(shè)直線的方程為,設(shè),,
將直線的方程與橢圓C的方程聯(lián)立,
整理得,
∴,
則由
得
將P點(diǎn)坐示代入橢圓C的方程,
得(*);
將代入等式(*)得
∴
因此所求直線AB的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是由正方形,直角梯形,三角形組成的一個(gè)平面圖形,其中,,將其沿,折起使得與重合,連接,如圖2.
(1)證明:圖2中的,,,四點(diǎn)共面,且平面平面;
(2)求圖2中的點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面ABCD,底面ABCD是等腰梯形,,.
(1)證明:平面PAC;
(2)若,,設(shè),且,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分別為菱形的邊的中點(diǎn),將菱形沿對(duì)角線折起,使點(diǎn)不在平面內(nèi),則在翻折過(guò)程中,以下命題正確的是___________.(寫(xiě)出所有正確命題的序號(hào))
①平面;②異面直線與所成的角為定值;③在二面角逐漸漸變小的過(guò)程中,三棱錐的外接球半徑先變小后變大;④若存在某個(gè)位程,使得直線與直線垂直,則的取值范圍是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,2),動(dòng)點(diǎn)M到點(diǎn)A的距離比動(dòng)點(diǎn)M到直線y=﹣1的距離大1,動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)Q為直線y=﹣1上的動(dòng)點(diǎn),過(guò)Q做曲線C的切線,切點(diǎn)分別為D、E,求△QDE的面積S的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(Ⅱ)設(shè)函數(shù)的導(dǎo)函數(shù)是,若不等式對(duì)于任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),是函數(shù)的導(dǎo)函數(shù),若函數(shù)存在兩個(gè)極值點(diǎn),,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】欲設(shè)計(jì)如圖所示的平面圖形,它由上、下兩部分組成,其中上部分是弓形(圓心為,半徑為,,),下部分是矩形.
(1)若,求該平面圖形的周長(zhǎng)的最大值;
(2)若,試確定的值,使得該平面圖形的面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形所在平面垂直于直角梯形所在平面,平面平面,且,且.
(1)設(shè)點(diǎn)為棱中點(diǎn),在面內(nèi)是否存在點(diǎn),使得平面?若存在,請(qǐng)證明,若不存在,說(shuō)明理由;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從2011年到2018年參加“北約”,“華約”考試而獲得加分的學(xué)生(每位學(xué)生只能參加“北約”,“華約”一種考試)人數(shù)可以通過(guò)以下表格反映出來(lái).(為了方便計(jì)算,將2011年編號(hào)為1,2012年編號(hào)為2,依此類(lèi)推……)
年份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
人數(shù)y | 2 | 3 | 4 | 4 | 7 | 7 | 6 | 6 |
(1)據(jù)悉,該校2018年獲得加分的6位同學(xué)中,有1位獲得加20分,2位獲得加15分,3位獲得加10分,從該6位同學(xué)中任取兩位,記該兩位同學(xué)獲得的加分之和為X,求X的分布列及期望.
(2)根據(jù)最近五年的數(shù)據(jù),利用最小二乘法求出y與x之間的線性回歸方程,并用以預(yù)測(cè)該校2019年參加“北約”,“華約”考試而獲得加分的學(xué)生人數(shù).(結(jié)果要求四舍五入至個(gè)位)
參考公式:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com