已知定點(diǎn)F(0,1)和直線l1:y=-1,過(guò)定點(diǎn)F與直線l1相切的動(dòng)圓圓心為點(diǎn)C.
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)若A,B是所求軌跡上的兩個(gè)點(diǎn),滿足OA⊥OB(0為坐標(biāo)原點(diǎn)),求證:直線AB經(jīng)過(guò)一個(gè)定點(diǎn).
(3)過(guò)點(diǎn)F的直線l2交軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求的最小值.
【答案】分析:(1)根據(jù)點(diǎn)C到點(diǎn)F的距離等于它到l1的距離,依據(jù)拋物線的定義可知點(diǎn)C的軌跡是以F為焦點(diǎn),l1為準(zhǔn)線的拋物線,進(jìn)而求得其軌跡方程;
(2)設(shè)直線AB的方程為y=kx+b代入拋物線方程,利用OA⊥OB,可得x1x2+y1y2=0,即可得到結(jié)論;
(3)設(shè)出直線l2的方程與拋物線方程聯(lián)立消去y,設(shè)出P,Q的坐標(biāo),根據(jù)韋達(dá)定理表示出x1+x2和x1x2的表達(dá)式,進(jìn)而可得點(diǎn)R的坐標(biāo),表示出,根據(jù)均值不等式求得其最小值.
解答:(1)解:由題設(shè)點(diǎn)C到點(diǎn)F的距離等于它到l1的距離,
∴點(diǎn)C的軌跡是以F為焦點(diǎn),l1為準(zhǔn)線的拋物線.
∴所求軌跡的方程為x2=4y.
(2)證明:由已知,設(shè)直線AB的方程為y=kx+b代入拋物線方程x2=4y,并整理得x2-4kx-4b=0
設(shè)A(x1,y1),B(x2,y2),則x1+x2=4k,x1x2=-4b,
因?yàn)镺A⊥OB,所以x1x2+y1y2=0,即b2-4b=0,解得,b=4或b=0(舍去),
所以直線AB過(guò)定點(diǎn)(0,4).
(3)解:由題意直線l2的方程為y=kx+1,與拋物線方程聯(lián)立消去y,得x2-4kx-4=0.
記P(x1,y1),Q(x2,y2),則x1+x2=4k,x1x2=-4.
∵直線PQ的斜率k≠0,易得點(diǎn)R的坐標(biāo)為(-,-1),
=(x1+)(x2+)+(kx1+2)(kx2+2)
=(1+k2)x1x2+(+2k)(x1+x2)++4
=-4(1+k2)+4k(+2k)++4=4(k2+)+8,
∵k2+≥2,當(dāng)且僅當(dāng)k2=1時(shí)取到等號(hào).
≥4×2+8=16,即的最小值為16.
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的關(guān)系,考查拋物線方程的求解,考查向量知識(shí)的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知定點(diǎn)F(0,1)和直線l1:y=-1,過(guò)定點(diǎn)F與直線l1相切的動(dòng)圓圓心為點(diǎn)C.
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)過(guò)點(diǎn)F在直線l2交軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求
RP
RQ
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定點(diǎn)F(0,1)和定直線l:y=-1,過(guò)定點(diǎn)F與定直線l相切的動(dòng)圓的圓心為點(diǎn)C
(1)求動(dòng)圓的圓心C的軌跡W的方程;
(2)設(shè)點(diǎn)P是W上的一動(dòng)點(diǎn),求PF的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定點(diǎn)F(0,1)和直線l1:y=-1,過(guò)定點(diǎn)F與直線l1相切的動(dòng)圓圓心為點(diǎn)C.
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)若A,B是所求軌跡上的兩個(gè)點(diǎn),滿足OA⊥OB(0為坐標(biāo)原點(diǎn)),求證:直線AB經(jīng)過(guò)一個(gè)定點(diǎn).
(3)過(guò)點(diǎn)F的直線l2交軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求
RP
RQ
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定點(diǎn)F(0,1)和定直線l:y=-1,過(guò)定點(diǎn)F與定直線l相切的動(dòng)圓的圓心為點(diǎn)C
(1)求動(dòng)圓的圓心C的軌跡W的方程;
(2)設(shè)點(diǎn)P是W上的一動(dòng)點(diǎn),求PF的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《第2章 圓錐曲線與方程》2010年單元測(cè)試卷(3)(解析版) 題型:解答題

已知定點(diǎn)F(0,1)和直線l1:y=-1,過(guò)定點(diǎn)F與直線l1相切的動(dòng)圓圓心為點(diǎn)C.
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)過(guò)點(diǎn)F在直線l2交軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案