【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為.
(Ⅰ)求這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;
(Ⅱ)用分層抽樣的方法在區(qū)間內(nèi)抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任意
抽取2件產(chǎn)品,求這2件產(chǎn)品都在區(qū)間內(nèi)的概率.
【答案】(Ⅰ);(Ⅱ).
【解析】
試題分析:(Ⅰ)利用頻率分布直方圖中所有頻率之和等于可得這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;(Ⅱ)先算出落在區(qū)間,,內(nèi)的產(chǎn)品件數(shù),再列舉出從件產(chǎn)品中任意抽取件產(chǎn)品的基本事件和這件產(chǎn)品都在區(qū)間內(nèi)的基本事件,進(jìn)而利用古典概型公式可得這件產(chǎn)品都在區(qū)間內(nèi)的概率.
試題解析:(Ⅰ)設(shè)區(qū)間內(nèi)的頻率為,
則區(qū)間,內(nèi)的頻率分別為和.
依題意得,
解得.
所以區(qū)間內(nèi)的頻率為.
(Ⅱ)由(Ⅰ)得,區(qū)間,,內(nèi)的頻率依次為,,.
用分層抽樣的方法在區(qū)間內(nèi)抽取一個(gè)容量為6的樣本,
則在區(qū)間內(nèi)應(yīng)抽取件,記為,,.
在區(qū)間內(nèi)應(yīng)抽取件,記為,.
在區(qū)間內(nèi)應(yīng)抽取件,記為.
設(shè)“從樣本中任意抽取2件產(chǎn)品,這2件產(chǎn)品都在區(qū)間內(nèi)”為事件M,
則所有的基本事件有:,,,,,,
,,,,,,,,,共15種.
事件M包含的基本事件有:,,,,,
,,,,,共10種.
所以這2件產(chǎn)品都在區(qū)間內(nèi)的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)D,E分別是邊AB,AC上的一點(diǎn),且滿足AD= AB,AE= AC,若BE⊥CD,則cosA的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國家擴(kuò)大內(nèi)需的政策,某廠家擬在2016年舉行某一產(chǎn)品的促銷獲得,經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)萬件與年促銷費(fèi)用萬元滿足(為常數(shù)).如果不搞促銷活動(dòng),則該產(chǎn)品的年銷量只能是1萬件.已知2016年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品平均成本的1.5倍(成產(chǎn)投入成本包括生產(chǎn)固定投入和生產(chǎn)再投入兩部分).
(1)求常數(shù),并將該廠家2016年該產(chǎn)品的利潤萬元表示為年促銷費(fèi)用萬元的函數(shù);
(2)該廠家2016年的年促銷費(fèi)用投入多少萬元時(shí),廠家利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (為常數(shù)).
(1)函數(shù)的圖象在點(diǎn)處的切線與函數(shù)的圖象相切,求實(shí)數(shù)的值;
(2)若函數(shù)在定義域上存在單調(diào)減區(qū)間,求實(shí)數(shù)的取值范圍;
(3)若, ,且,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將一塊直角三角形木板置于平面直角坐標(biāo)系中,已知,點(diǎn)是三角形木板內(nèi)一點(diǎn),現(xiàn)因三角形木板中陰影部分受到損壞,要把損壞部分鋸掉,可用經(jīng)過點(diǎn)的任一直線將三角形木板鋸成.設(shè)直線的斜率為.
(Ⅰ)求點(diǎn)的坐標(biāo)及直線的斜率的范圍;
(Ⅱ)令的面積為,試求出的取值范圍;
(Ⅲ)令(Ⅱ)中的取值范圍為集合,若對(duì)恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以為極點(diǎn), 軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,( )
(1)寫出直線經(jīng)過的定點(diǎn)的直角坐標(biāo),并求曲線的普通方程;
(2)若,求直線的極坐標(biāo)方程,以及直線與曲線的交點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),求:
(Ⅰ)過點(diǎn)與原點(diǎn)距離為2的直線的方程;
(Ⅱ)過點(diǎn)與原點(diǎn)距離最大的直線的方程,最大距離是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織了一次高二文科學(xué)生數(shù)學(xué)學(xué)業(yè)水平模擬測(cè)試,學(xué)校從測(cè)試合格的男、女生中各隨機(jī)抽取100人的成績進(jìn)行統(tǒng)計(jì)分析,分別制成了如圖所示的男生和女生數(shù)學(xué)成績的頻率分布直方圖.
(Ⅰ)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?
(Ⅱ)在(Ⅰ)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有一名男生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com