【題目】在△ABC中,點(diǎn)D,E分別是邊AB,AC上的一點(diǎn),且滿足AD= AB,AE= AC,若BE⊥CD,則cosA的最小值是 .
【答案】
【解析】解:如圖所示,不妨設(shè)C(3,0),B(x,y),A(0,0).
∵AD= AB,AE= AC,∴E(1,0),D .
∵BE⊥CD,
∴ =(1﹣x,﹣y) = ﹣ =0,
化為: +y2= .圓心G ,半徑r= .
設(shè)圓的切線方程為y=kx(取k>0).
則 = ,化為k2= ,解得k= .
當(dāng)AB與⊙G相切時(shí),∠A最大,cosA最。
此時(shí)tanA= ,
∴cosA= = .
∴cosA的最小值為 .
所以答案是: .
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握正弦定理:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題。
(1)已知函數(shù)f(x)=4x2﹣kx﹣8在[5,20]上具有單調(diào)性,求實(shí)數(shù)k的取值范圍.
(2)關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩個不同的實(shí)根,且一個大于4,另一個小于4,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,試確定函數(shù)的單調(diào)區(qū)間;
(2)若,且對于任意, 恒成立,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}前n項(xiàng)和為Sn=﹣n2+12n.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前10項(xiàng)和T10 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,將函數(shù)圖象向下平移個單位得到的圖象,則
(Ⅰ)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)求在區(qū)間上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),離心率為, , 是橢圓的長軸的兩個端點(diǎn)(位于右側(cè)),是橢圓在軸正半軸上的頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在經(jīng)過點(diǎn)且斜率為的直線與橢圓交于不同兩點(diǎn)和,使得向量與共線?如果存在,求出直線方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為直角坐標(biāo)系的坐標(biāo)原點(diǎn),雙曲線 上有一點(diǎn)(),點(diǎn)在軸上的射影恰好是雙曲線的右焦點(diǎn),過點(diǎn)作雙曲線兩條漸近線的平行線,與兩條漸近線的交點(diǎn)分別為, ,若平行四邊形的面積為1,則雙曲線的標(biāo)準(zhǔn)方程是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的質(zhì)量指標(biāo)值,由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為.
(Ⅰ)求這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;
(Ⅱ)用分層抽樣的方法在區(qū)間內(nèi)抽取一個容量為6的樣本,將該樣本看成一個總體,從中任意
抽取2件產(chǎn)品,求這2件產(chǎn)品都在區(qū)間內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com