【題目】若將函數(shù)y=sinx+ cosx的圖象向右平移φ(φ>0)個單位長度得到函數(shù)y=sinx﹣ cosx的圖象,則φ的最小值為 .
【答案】
【解析】解:∵y=sin x+ cos x=2sin(x+ ),y=sin x﹣ cos x=2sin(x﹣ ),
故把函數(shù)y=sinx+ cosx的圖象至少向右平移 個單位長度可得函數(shù)y=sinx﹣ cosx的圖象,
故則φ的最小值為 ,
所以答案是: .
【考點精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關知識點,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.“p∨q”是“p∧q”的充分不必要條件
B.樣本10,6,8,5,6的標準差是3.3
C.K2是用來判斷兩個分類變量是否相關的隨機變量,當K2的值很小時可以推定兩類變量不相關
D.設有一個回歸直線方程為 =2﹣1.5x,則變量x每增加一個單位, 平均減少1.5個單位.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項均不相等的等差數(shù)列{an}的前四項和S4=14,且a1 , a3 , a7成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設Tn為數(shù)列{ }的前n項和,若Tn≤λan+1對n∈N*恒成立,求實數(shù)λ的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱柱ABC-A′B′C′,底面是邊長為1的正三角形,側面為全等的矩形且高為8,求一點自A點出發(fā)沿著三棱柱的側面繞行一周后到達A′點的最短路線長.
本題條件不變,求一點自A點出發(fā)沿著三棱柱的側面繞行兩周后到達A′點的最短路線長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)= x3﹣(1+ )x2+2bx在區(qū)間[3,5]上不是單調(diào)函數(shù),則函數(shù)f(x)在R上的極大值為( )
A. b2﹣ b3
B. b﹣
C.0
D.2b﹣
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】長方體ABCD-A1B1C1D1中,AB=BC=2,D1D=3,點M是B1C1的中點,點N是AB的中點.建立如圖所示的空間直角坐標系.
(1)寫出點D、N、M的坐標;
(2)求線段MD、MN的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,ABCD-A1B1C1D1為正方體,下面結論錯誤的是 ( )
A. BD∥平面CB1D1 B. AC1⊥BD
C. AC1⊥平面CB1D1 D. 異面直線AD與CB1所成的角為60°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=
∠ACD=90°,∠EAC=60°,AB=AC=AE.
(1)在直線BC上是否存在一點P,使得DP∥平面EAB?請證明你的結論.
(2)求平面EBD與平面ABC所成的銳二面角θ的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com