【題目】已知拋物線的焦點(diǎn)到直線的距離為

1)求拋物線的方程;

2)如圖,若,直線與拋物線相交于兩點(diǎn),與直線相交于點(diǎn),且,求面積的取值范圍.

【答案】1;(2.

【解析】

(1)寫出拋物線的焦點(diǎn)坐標(biāo),根據(jù)點(diǎn)到直線的距離公式列方程,解方程可得的值,即得拋物線的方程;

2)設(shè),直線,.將直線的方程與拋物線的方程聯(lián)立,利用根與系數(shù)的關(guān)系可得.求出點(diǎn)到直線的距離,根據(jù)弦長公式求出,故的面積,可求面積的取值范圍.

(1)拋物線的焦點(diǎn)坐標(biāo)為,

焦點(diǎn)到直線的距離為,

.

拋物線的方程為

2)由題意可設(shè),直線

將直線的方程代入拋物線的方程,消去,得

直線與拋物線相交于兩點(diǎn),

設(shè),則.

是線段的中點(diǎn),,

代入,解得

,,,

直線的方程為.

點(diǎn)到直線的距離

,,

,則

,即

面積的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春秋以前中國已有“抱甕而出灌”的原始提灌方式,使用提水吊桿——桔槔,后發(fā)展成轆轤.19世紀(jì)末,由于電動機(jī)的發(fā)明,離心泵得到了廣泛應(yīng)用,為發(fā)展機(jī)械提水灌溉提供了條件.圖形如圖所示為灌溉抽水管道在等高圖的上垂直投影,在A處測得B處的仰角為37度,在A處測得C處的仰角為45度,在B處測得C處的仰角為53度,A點(diǎn)所在等高線值為20米,若BC管道長為50米,則B點(diǎn)所在等高線值為( )(參考數(shù)據(jù)

A.30B.50C.60D.70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第二屆中國國際進(jìn)口博覽會于2019115日至10日在上海國家會展中心舉行.它是中國政府堅(jiān)定支持貿(mào)易自由化和經(jīng)濟(jì)全球化,主動向世界開放市場的重要舉措,有利于促進(jìn)世界各國加強(qiáng)經(jīng)貿(mào)交流合作,促進(jìn)全球貿(mào)易和世界經(jīng)濟(jì)增長,推動開放世界經(jīng)濟(jì)發(fā)展.某機(jī)構(gòu)為了解人們對“進(jìn)博會”的關(guān)注度是否與性別有關(guān),隨機(jī)抽取了100名不同性別的人員(男、女各50名)進(jìn)行問卷調(diào)查,并得到如下列聯(lián)表:

男性

女性

合計(jì)

關(guān)注度極高

35

14

49

關(guān)注度一般

15

36

51

合計(jì)

50

50

100

1)根據(jù)列聯(lián)表,能否有99.9%的把握認(rèn)為對“進(jìn)博會”的關(guān)注度與性別有關(guān);

2)若從關(guān)注度極高的被調(diào)查者中按男女分層抽樣的方法抽取7人了解他們從事的職業(yè)情況,再從7人中任意選取2人談?wù)勱P(guān)注“進(jìn)博會”的原因,求這2人中至少有一名女性的概率.

附:.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司有9個(gè)連在一起的停車位,現(xiàn)有5輛不同型號的轎車需停放,若要求剩余的4個(gè)車位中恰有3個(gè)連在起,則不同的停放方法有________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市數(shù)學(xué)教研室對全市201815000名的高中生的學(xué)業(yè)水平考試的數(shù)學(xué)成績進(jìn)行調(diào)研,隨機(jī)選取了200名高中生的學(xué)業(yè)水平考試的數(shù)學(xué)成績作為樣本進(jìn)行分析,將結(jié)果列成頻率分布表如下:

數(shù)學(xué)成績

頻數(shù)

頻率

5

0.025

15

0.075

50

0.25

70

0.35

45

0.225

15

0.075

合計(jì)

200

1

根據(jù)學(xué)業(yè)水平考試的數(shù)學(xué)成績將成績分為“優(yōu)秀”、“合格”、“不合格”三個(gè)等級,其中成績大于或等于80分的為“優(yōu)秀”,成績小于60分的為“不合格”,其余的成績?yōu)椤昂细瘛?/span>.

1)根據(jù)頻率分布表中的數(shù)據(jù),估計(jì)全市學(xué)業(yè)水平考試的數(shù)學(xué)成績的眾數(shù)、中位數(shù)(精確到0.1);

2)市數(shù)學(xué)教研員從樣本中又隨機(jī)選取了名高中生的學(xué)業(yè)水平考試的數(shù)學(xué)成績,如果這名高中生的學(xué)業(yè)水平考試的數(shù)學(xué)成績的等級情況恰好與按照三個(gè)等級分層抽樣所得的結(jié)果相同,求的最小值;

3)估計(jì)全市2018級高中生學(xué)業(yè)水平考試“不合格”的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在極坐系中,點(diǎn)繞極點(diǎn)順時(shí)針旋轉(zhuǎn)角得到點(diǎn).為原點(diǎn),極軸為軸非負(fù)半軸,并取相同的單位長度建立平面直角坐標(biāo)系,曲線逆時(shí)針旋轉(zhuǎn)得到曲線.

1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)點(diǎn)的極坐標(biāo)為,直線過點(diǎn)且與曲線交于兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙紐線最早于1694年被瑞士數(shù)學(xué)家雅各布·伯努利用來描述他所發(fā)現(xiàn)的曲線.在平面直角坐標(biāo)系中,把到定點(diǎn),距離之積等于)的點(diǎn)的軌跡稱為雙紐線C.已知點(diǎn)是雙紐線C上一點(diǎn),下列說法中正確的有(

①雙紐線C關(guān)于原點(diǎn)O中心對稱; ;

③雙紐線C上滿足的點(diǎn)P有兩個(gè); 的最大值為.

A.①②B.①②④C.②③④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

2)在(1)中,設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任意一點(diǎn)為,當(dāng)點(diǎn)到直線的距離取最大值時(shí),求此時(shí)點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有一個(gè)“引葭赴岸”問題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問水深、葭長各幾何?”其意思為“今有水池1丈見方(即尺),蘆葦生長在水的中央,長出水面的部分為1.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問水深、蘆葦?shù)拈L度各是多少?假設(shè),現(xiàn)有下述四個(gè)結(jié)論:

①水深為12尺;②蘆葦長為15尺;③;④.

其中所有正確結(jié)論的編號是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

同步練習(xí)冊答案