Processing math: 74%
5.在某次水下考古活動(dòng)中,需要潛水員潛入水深為30米的水底進(jìn)行作業(yè).其用氧量包含3個(gè)方面:①下潛時(shí),平均速度為v(米/單位時(shí)間),單位時(shí)間內(nèi)用氧量為cv2(c為正常數(shù));②在水底作業(yè)需5個(gè)單位時(shí)間,每個(gè)單位時(shí)間用氧量為0.4;③返回水面時(shí),平均速度為v2(米/單位時(shí)間),單位時(shí)間用氧量為0.2.記該潛水員在此次考古活動(dòng)中,總用氧量為y.
(1)將y表示為v的函數(shù);
(2)設(shè)0<v≤5,試確定下潛速度v,使總的用氧量最小,并求y的最小值.

分析 (1)分別計(jì)算潛入水底用時(shí)、用氧量;水底作業(yè)時(shí)用氧量;返回水面用時(shí)、用氧量,即可得到總用氧量的函數(shù);
(2)利用基本不等式可得v=25c時(shí)取等號,再結(jié)合0<v≤5,即可求得確定下潛速度v,使總的用氧量最少.

解答 解:(1)潛入水底用時(shí)30v,用氧量為30v•cv2=30cv,
水底作業(yè)時(shí)用氧量為5×0.4=2,
返回水面用時(shí)60v,用氧量為60v•0.2=12v
∴總用氧量y=30cv+2+12v(v>0);
(2)y=30cv+2+12v≥2+230cv12v=2+1210c,
當(dāng)且僅當(dāng)30cv=12v,即v=25c時(shí)取等號
當(dāng)25c≤5,即c≥2125時(shí),v=25c時(shí),
y的最小值為2+1210c,
當(dāng)25c>5,即c<2125時(shí),y′=30cv212v2<0,
∴函數(shù)在(0,5]上為減函數(shù),
∴v=5時(shí),y的最小值為150c+225
綜上,當(dāng)c≥2125時(shí),下潛速度為v=25c時(shí),用氧量最小值為2+1210c
當(dāng)c<2125時(shí),下潛速度為5時(shí),用氧量最小值為150c+225

點(diǎn)評 本題考查函數(shù)最值的求法,考查基本不等式的運(yùn)用,考查分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某企業(yè)為節(jié)能減排,用9萬元購進(jìn)一臺(tái)新設(shè)備用于生產(chǎn).第一年需運(yùn)營費(fèi)用2萬元,從第二年起,每年運(yùn)營費(fèi)用均比上一年增加2萬元,該設(shè)備每年生產(chǎn)的收入均為12.5萬元. 設(shè)該設(shè)備使用了n(n∈N*)年后,年平均盈利額達(dá)到最大值(盈利額等于收入減去成本),則n等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某樓盤的建筑成本由土地使用權(quán)費(fèi)和材料工程費(fèi)構(gòu)成,已知土地使用權(quán)取得費(fèi)為2000元/m2;材料工程費(fèi)在建造第一層時(shí)為400元/m2;以后每增加一層費(fèi)用增加40元/m2;要使平均每平方米建筑面積的成本費(fèi)最低,則應(yīng)把樓盤的樓房設(shè)計(jì)成10層.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=xx31+x22的值域?yàn)閇-14,14].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知曲線y=Asin(ωx+φ)+B(A>0,ω>0,|φ|<\frac{π}{2},B∈R)上的一個(gè)最高點(diǎn)坐標(biāo)為(\frac{π}{3},\sqrt{2}-1),與此點(diǎn)相鄰的一個(gè)最低點(diǎn)的坐標(biāo)為(\frac{7π}{3},-\sqrt{2}-1).

(1)求這條曲線的函數(shù)解析式.
(2)在圖的平面直角坐標(biāo)系中,用“五點(diǎn)作圖法”畫出該曲線在[0,3π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給出下列命題:
①存在實(shí)數(shù)α,使sinα•cosα=1;
②函數(shù)f(x)=sin2x-\frac{1}{2}(x∈R)是偶函數(shù);
③x=\frac{π}{8}是函數(shù)y=sin(2x+\frac{5}{4}π)的一條對稱軸的方程;
④若α、β是第一象限的角,且α>β,則sinα>sinβ.
其中正確命題的序號是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)周期函數(shù)f(x)是定義在R上的奇函數(shù),若f(x)的最小正周期為3,且滿足f(1)>-2,f(2)=m2-m,則m的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在等差數(shù)列{an}中,已知a1=\frac{1}{3},a3=\frac{5}{3},an=33,則n=( �。�
A.48B.49C.50D.51

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為解決蔬菜保鮮問題,很多菜農(nóng)在政府的引導(dǎo)下投資建立冷庫,把蔬菜的銷售時(shí)間延長,某菜農(nóng)計(jì)劃在自己的住房旁邊建一個(gè)長方體型簡易冷庫,高度為2米,利用現(xiàn)有的住房的一面墻作為冷庫的東墻,冷庫的西墻利用鋼結(jié)構(gòu),每平方米造價(jià)200元,南北兩墻砌磚,每平方米造價(jià)225元,頂部每平方米造價(jià)200元.設(shè)西墻的長度為x元,冷庫的占地面積為S平方米.
(1)若S=121,則該菜農(nóng)至少需要投資多少元?
(2)若菜農(nóng)計(jì)劃投資32000元,求S的最大值及此時(shí)x的值.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炶鈧繂鐣烽锕€唯闁挎棁濮ら惁搴♀攽閻愬樊鍤熷┑顔炬暬閹虫繃銈i崘銊у幋闂佺懓顕崑娑氱不閻樼粯鈷戠紒瀣皡閺€缁樸亜閵娿儲顥㈡鐐茬墦婵℃瓕顦柛瀣崌濡啫鈽夊▎蹇旀畼闁诲氦顫夊ú鏍ь嚕閸洖绠為柕濞垮労濞撳鎮归崶顏勭处濠㈣娲熷缁樻媴閾忕懓绗℃繛鎾寸椤ㄥ﹤鐣烽弶搴撴婵ê褰夌粭澶娾攽閻愭潙鐏﹂懣銈嗕繆閹绘帞澧涚紒缁樼洴瀹曞崬螣閸濆嫷娼旀俊鐐€曠换鎺楀窗閺嵮屾綎缂備焦蓱婵挳鏌ら幁鎺戝姢闁靛棗锕娲閳哄啰肖缂備胶濮甸幑鍥偘椤旇法鐤€婵炴垶鐟﹀▍銏ゆ⒑鐠恒劌娅愰柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆戠矆閸愨斂浜滈柡鍥ф濞层倝鎮″鈧弻鐔告綇妤e啯顎嶉梺绋款儐閸旀瑩寮诲☉妯锋瀻闊浄绲炬晥闂備浇顕栭崰妤呮偡瑜忓Σ鎰板箻鐎涙ê顎撻梺鍛婄箓鐎氱兘鍩€椤掆偓閻倿寮诲☉銏犖╅柕澹啰鍘介柣搴㈩問閸犳牠鈥﹂柨瀣╃箚闁归棿绀侀悡娑㈡煕鐏炲墽鐓紒銊ょ矙濮婄粯鎷呴崨闈涚秺瀵敻顢楅崒婊呯厯闂佺鎻€靛矂寮崒鐐寸叆闁绘洖鍊圭€氾拷