【題目】設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y),
(1)求f(1)的值;
(2)如果f(x)+f(2﹣x)<2,求x的取值范圍.

【答案】
(1)解:令x=y=1,則f(1)=f(1)+f(1),

∴f(1)=0


(2)解:∵

,

又由y=f(x)是定義在R+上的減函數(shù),得:

解之得:


【解析】(1)利用賦值法:令x=y=1即可求解(2)利用賦值法可得,f( )=2,然后結(jié)合f(xy)=f(x)+f(y),轉(zhuǎn)化已知不等式,從而可求
【考點精析】利用函數(shù)單調(diào)性的性質(zhì)和函數(shù)的值對題目進行判斷即可得到答案,需要熟知函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集;函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是空間兩條直線, 是空間兩個平面,則下列命題中不正確的是( )

A. 當(dāng)時,“”是“”的充要條件

B. 當(dāng)時,“”是“”的充分不必要條件

C. 當(dāng)時,“”是“”的必要不充分條件

D. 當(dāng)時,“”是“”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖平行四邊形ABCD中,∠DAB=60°,AB=2,AD=2,M為CD邊的中點,沿BM將△CBM折起使得平面BMC⊥平面ABMD.

(1)求四棱錐C﹣ADMB的體積;
(2)求折后直線AB與平面AMC所成的角的正弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題: 1)y=|cos(2x+ )|最小正周期為π;
2)函數(shù)y=tan 的圖象的對稱中心是(kπ,0),k∈Z;
3)f(x)=tanx﹣sinx在(﹣ , )上有3個零點;
4)若 , ,則
其中錯誤的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對任意實數(shù)x,cos2x+2ksinx﹣2k﹣2<0恒成立,則實數(shù)k的取值范圍是(
A.
B.
C.
D.k>﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x3﹣x2+x.
(1)求函數(shù)f(x)在[﹣1,2]上的最大值和最小值;
(2)若函數(shù)g(x)=f(x)﹣4x,x∈[﹣3,2],求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對定義域分別為D1 , D2的函數(shù)y=f(x),y=g(x),規(guī)定:函數(shù)h(x)= ,f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),則h(x)的單調(diào)減區(qū)間是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|.
(1)若a=2,解不等式f(x)≥2;
(2)已知f(x)是偶函數(shù),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,甲所得為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案