【題目】在四棱錐中,平面,是正三角形,與的交點恰好是中點,又,,點在線段上,且.
()求證:.
()求證:平面.
()設平面平面,試問:直線是否與直線平行,請說明理由.
【答案】(1)見解析;(2)見解析;(3)見解析.
【解析】試題分析:(1)根據正三角形性質得,再根據線面垂直性質得,由線面垂直判定定理得平面,即得.(2)根據計算得,根據比例關系得,再根據線面平行判定定理得結論,(3)先假設直線,根據線面平行判定定理得平面,再根據線面平行性質定理得,與題意矛盾,否定假設.
試題解析:()證明:∵是正三角形,是中點,
∴,即,
又∵平面,平面,
∴.
又,
∴平面,
∵平面,
∴.
()在正三角形中,,
在中,為中點,,
所以,,
所以,
所以.
在等腰直角三角形中,,,
∴,
又平面,平面,
∴平面.
()假設直線,
∵平面,平面,
∴平面,
又平面,平面平面,
∴,
這與與不平行相矛盾,假設不成立.
∴直線與直線不平行.
點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型.
(1)證明線面、面面平行,需轉化為證明線線平行.
(2)證明線面垂直,需轉化為證明線線垂直.
(3)證明線線垂直,需轉化為證明線面垂直.
科目:高中數學 來源: 題型:
【題目】如圖(1)是一正方體的表面展開圖,MN和PB是兩條面對角線,請在圖(2)的正方體中將MN和PB畫出來,并就這個正方體解決下面問題。
(1)求證:MN∥平面PBD;
(2)求證:平面;
(3)求PB和平面NMB所成的角的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于無窮數列{ }與{ },記A={ | = , },B={ | = , },若同時滿足條件:①{ },{ }均單調遞增;② 且 ,則稱{ }與{ }是無窮互補數列.
(1)若 = , = ,判斷{ }與{ }是否為無窮互補數列,并說明理由;
(2)若 = 且{ }與{ }是無窮互補數列,求數列{ }的前16項的和;
(3)若{ }與{ }是無窮互補數列,{ }為等差數列且 =36,求{ }與{ }得通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】家用電器一件,現價2000元,實行分期付款,每期付款數相同,每期為一月,購買后一個月付款一次,共付12次,即購買后一年付清,如果按月利率8‰,每月復利一次計算,那么每期應付款多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
注:年份代碼1﹣7分別對應年份2008﹣2014.
(1)由折線圖看出,可用線性回歸模型擬合y與t的關系,請用相關系數加以證明;
(2)建立y關于t的回歸方程(系數精確到0.01),預測2016年我國生活垃圾無害化處理量.
附注:
參考數據: =9.32, =40.17, =0.55, ≈2.646.
參考公式: ,
回歸方程 中斜率和截距的最小二乘估計公式分別為:
, .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列關于用斜二測畫法畫直觀圖的說法中,錯誤的是( )
A. 用斜二測畫法畫出的直觀圖是在平行投影下畫出的空間圖形
B. 幾何體的直觀圖的長、寬、高與其幾何體的長、寬、高的比例相同
C. 水平放置的矩形的直觀圖是平行四邊形
D. 水平放置的圓的直觀圖是橢圓
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題正確的個數是( )
①命題“x0∈R,x02+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函數f(x)=cos2ax﹣sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量 與 的夾角是鈍角”的充分必要條件是“ <0”.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點 P 與定點的距離和它到定直線 x 4 的距離的比是1: 2 ,記動點 P 的軌跡為曲線 E.
(1)求曲線 E 的方程;
(2)設 A 是曲線 E 上的一個點,直線 AF 交曲線 E 于另一點 B,以 AB 為邊作一個平行四邊形,頂點 A、B、C、D 都在軌跡 E 上,判斷平行四邊形 ABCD 能否為菱形,并說明理由;
(3)當平行四邊形 ABCD 的面積取到最大值時,判斷它的形狀,并求出其最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com