【題目】如圖,已知雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2 , |F1F2|=4,P是雙曲線右支上一點,直線PF2交y軸于點A,△APF1的內(nèi)切圓切邊PF1于點Q,若|PQ|=1,則雙曲線的離心率為

【答案】2
【解析】解:∵雙曲線的焦距為4,

∴|F1F2|=4,∴c=2

∵|PQ|=1,△APF1的內(nèi)切圓在邊PF1上的切點為Q,

∴根據(jù)切線長定理可得AM=AN,F(xiàn)1M=F1Q,PN=PQ,

∵|AF1|=|AF2|,

∴AM+F1M=AN+PN+NF2,

∴F1M=PN+NF2=PQ+PF2

∴|PF1|﹣|PF2|=F1Q+PQ﹣PF2=F1M+PQ﹣PF2=PQ+PF2+PQ﹣PF2=2PQ=2,

即2a=2,則a=1,

∵a=1,c=2

∴雙曲線的離心率是e= =2.

所以答案是:2

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,內(nèi)角A,B,C成等差數(shù)列,其對邊a,b,c滿足2b2=3ac,求A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,底面為矩形, 平面, ,點的中點.

)求證: 平面

)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品在最近100天內(nèi)的價格f(t)與時間t的函數(shù)關系式是

銷售量g(t)與時間t的函數(shù)關系式是g(t)=- (0≤t≤100),求這種商品的日銷售額的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)ax (a1),

(1)判斷函數(shù)f(x)(1,+∞)上的單調(diào)性,并證明你的判斷;

(2)a3,求方程f(x)0的正根(精確到0.1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的首項a1=1,且an+1= (n∈N*).
(1)證明:數(shù)列{ }是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)設bn=anan+1 , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+2x﹣2﹣a(a0),

(1)若a=﹣1,求函數(shù)的零點;

(2)若函數(shù)在區(qū)間(0,1]上恰有一個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的定義域;

(2)若函數(shù)的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某紡織廠訂購一批棉花,其各種長度的纖維所占的比例如下表所示:

(1)請估計這批棉花纖維的平均長度與方差.

(2)如果規(guī)定這批棉花纖維的平均長度為4.90厘米,方差不超過1.200,兩者允許誤差均不超過0.10視為合格產(chǎn)品.請你估計這批棉花的質(zhì)量是否合格?

查看答案和解析>>

同步練習冊答案