【題目】已知函數(shù).

(1)若函數(shù)有且只有一個零點(diǎn),求實(shí)數(shù)的值;

(2)證明:當(dāng)時, .

【答案】(1)1;(2)見解析.

【解析】試題分析:

(1)討論函數(shù)的單調(diào)性可得滿足題意時,解得.

(2)結(jié)合(1)的結(jié)論不妨設(shè),結(jié)合函數(shù)的性質(zhì)即可證得題中的不等式.

試題解析:

(1)方法1: , ,

時, ; 時, 時, ;

上單調(diào)遞減,在上單調(diào)遞增,

,∵有且只有一個零點(diǎn),

,∴.

方法2:由題意知方程僅有一實(shí)根,

(),

,

時, ; 時, 時, ,

上單調(diào)遞增,在上單調(diào)遞減,

所以要使僅有一個零點(diǎn),則.

方法3:函數(shù)有且只有一個零點(diǎn)即為直線與曲線相切,設(shè)切點(diǎn)為

,∴,∴

所以實(shí)數(shù)的值為1.

(2)由(1)知,即當(dāng)且僅當(dāng)時取等號,

,令得, ,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在四棱錐中,底面是菱形, , 平面, 分別是的中點(diǎn).

(Ⅰ)求證: 平面

(Ⅱ)若,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在海岸線一側(cè)處有一個美麗的小島,某旅游公司為方便游客,在上設(shè)立了兩個報(bào)名點(diǎn),滿足中任意兩點(diǎn)間的距離為.公司擬按以下思路運(yùn)作:先將兩處游客分別乘車集中到之間的中轉(zhuǎn)點(diǎn)(點(diǎn)異于兩點(diǎn)),然后乘同一艘輪游輪前往島.據(jù)統(tǒng)計(jì),每批游客處需發(fā)車2輛, 處需發(fā)車4輛,每輛汽車每千米耗費(fèi)元,游輪每千米耗費(fèi)元.(其中是正常數(shù))設(shè),每批游客從各自報(bào)名點(diǎn)到島所需運(yùn)輸成本為元.

(1) 寫出關(guān)于的函數(shù)表達(dá)式,并指出的取值范圍;

(2) 問:中轉(zhuǎn)點(diǎn)距離處多遠(yuǎn)時, 最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的程序框圖運(yùn)行程序后,輸出的結(jié)果是31,則判斷框中的整數(shù)H=(

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線E的中心在坐標(biāo)原點(diǎn),離心率為2,E的右焦點(diǎn)與拋物線C:y2=8x的焦點(diǎn)重合,A、B是C的準(zhǔn)線與E的兩個交點(diǎn),則|AB|=(
A.3
B.6
C.9
D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,
且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1

(1)求證:AB∥平面PCD;
(2)求證:BC⊥平面PAC;
(3)若M是PC的中點(diǎn),求三棱錐C﹣MAD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求曲線、的極坐標(biāo)方程;

(2)求曲線交點(diǎn)的極坐標(biāo),其中, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義域?yàn)椋?,+∞)的單調(diào)函數(shù),若對任意的x∈(0,+∞),都有f[f(x)﹣ ]=2,則f(2016)=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2alnx﹣2ax=0有唯一解,則實(shí)數(shù)a的值為(
A.1
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案