【題目】給出下列說法:
(1)命題“若、
都是奇數(shù),則
是偶數(shù)”的否命題是“若
、
都不是奇數(shù),則
不是偶數(shù)”;
(2)命題“如果,那么
”是真命題;
(3)“或
”是“
”的必要不充分條件.
那么其中正確的說法有( )
A.0個B.1個C.2個D.3個
【答案】C
【解析】
利用否命題的形式判斷(1)的正誤;集合關(guān)系判斷(2)的正誤;充要條件判斷(3)的正誤.
對于(1)命題“若、
都是奇數(shù),則
是偶數(shù)”的否命題
是“若、
都不是奇數(shù),則
不是偶數(shù)”;不滿足否命題的
形式,應(yīng)改為 “若、
不都是奇數(shù),則
不是偶數(shù)”,所以(1)錯誤;
對于(2)命題“如果,那么
”是真命題;
滿足集合的交集與并集關(guān)系,正確;
對于(3)“或
”是“
”的必要不充分條件,
根據(jù)逆否命題的等價性可知,可轉(zhuǎn)化為“”與
“且
”的條件關(guān)系,當(dāng)
且
,
有.但
,比如
,
,
但此時且
不成立,
是
且
成立的必要不充分條件,即(3)正確.
故選:C
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,g(x)=
(a>0,且a≠1).
(1)求函數(shù)φ(x)=f(x)+g(x)的定義域;
(2)試確定不等式f(x)≤g(x)中x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機詢問名不同性別的大學(xué)生在購買食物時是否看營養(yǎng)說明,得到如下列聯(lián)表:
男 | 女 | 總計 | |
讀營養(yǎng)說明 | |||
不讀營養(yǎng)說明 | |||
總計 |
附:
(1)由以上列聯(lián)表判斷,能否在犯錯誤的概率不超過的前提下認為性別和是否看營養(yǎng)說明有關(guān)系呢?
(2)從被詢問的名不讀營養(yǎng)說明的大學(xué)生中隨機選取
名學(xué)生,求抽到女生人數(shù)
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線:
,
:
,則下面結(jié)論正確的是( )
A. 把上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線
B. 把上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線
C. 把上各點的橫坐標縮短到原來的
倍,縱坐標不變,再把得到的曲線向左平移
個單位長度,得到曲線
D. 把上各點的橫坐標縮短到原來的
倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用對人民群眾的健康帶來一定的危害,為了給消費者帶來放心的蔬菜,某農(nóng)村合作社每年投入200萬元,搭建了甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入種黃瓜的年收入
與投入
(單位:萬元)滿足
.設(shè)甲大棚的投入為
(單位:萬元),每年兩個大棚的總收益為
(單位:萬元)
(1)求的值;
(2)試問如何安排甲、乙兩個大棚的投入,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少兒游泳隊需對隊員進行限時的仰臥起坐達標測試.已知隊員的測試分數(shù)與仰臥起坐
個數(shù)之間的關(guān)系如下:
;測試規(guī)則:每位隊員最多進行三組測試,每組限時1分鐘,當(dāng)一組測完,測試成績達到60分或以上時,就以此組測試成績作為該隊員的成績,無需再進行后續(xù)的測試,最多進行三組;根據(jù)以往的訓(xùn)練統(tǒng)計,隊員“喵兒”在一分鐘內(nèi)限時測試的頻率分布直方圖如下:
(1)計算值;
(2)以此樣本的頻率作為概率,求
①在本次達標測試中,“喵兒”得分等于的概率;
②“喵兒”在本次達標測試中可能得分的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的極小值為
.
(1)求的單調(diào)區(qū)間;
(2)證明:(其中
為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間
上有最大值
和最小值
.設(shè)
(1)求的值
(2)若不等式在
上有解,求實數(shù)
的取值范圍;
(3)若有三個不同的實數(shù)解,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com