【題目】如圖,邊長為3的正方形所在的平面與等腰直角三角形所在的平面互相垂直,,設(shè).

(1)求證:平面;

(2)求二面角的余弦值.

【答案】(1)證明見解析;(2).

【解析】分析:(1)過,連接,,由幾何關(guān)系可證得四邊形為平行四邊形,結(jié)合線面平行的判定定理可得平面.

(2)以為原點(diǎn),軸正方向,建立空間直角坐標(biāo)系,由題意可得平面的一個(gè)法向量為,平面的一個(gè)法向量為,據(jù)此計(jì)算可得二面角的余弦值為.

詳解:(1)過,連接,,因?yàn)?/span>,

,所以,

,所以,故,

所以四邊形為平行四邊形,故

平面,平面,所以平面.

(2)以為原點(diǎn),軸正方向,建立空間直角坐標(biāo)系,

,

,

設(shè)平面的一個(gè)法向量為,則

平面的一個(gè)法向量為,

,

設(shè)平面的一個(gè)法向量為,則

平面的一個(gè)法向量為,

,

從而求二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)若,求的極值;

)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),對任意實(shí)數(shù) .

1上是單調(diào)遞減的,求實(shí)數(shù)的取值范圍;

2)若對任意恒成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在上的偶函數(shù),對任意,都有,且當(dāng)時(shí),.在區(qū)間內(nèi)關(guān)于的方程恰有個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解高三學(xué)生的心理健康狀況,某校心理健康咨詢中心對該校高三學(xué)生的睡眠狀況進(jìn)行抽樣調(diào)查,隨機(jī)抽取了50名男生和50名女生,統(tǒng)計(jì)了他們進(jìn)入高三后的第一個(gè)月平均每天睡眠時(shí)間,得到如下頻數(shù)分布表.規(guī)定:“平均每天睡眠時(shí)間大于等于8小時(shí)”為“睡眠充足”,“平均每天睡眠時(shí)間小于8小時(shí)”為“睡眠不足”.

高三學(xué)生平均每天睡眠時(shí)間頻數(shù)分布表

睡眠時(shí)間(小時(shí))

[5,6)

[6,7)

[7,8)

[8,9)

[9,10)

男生(人)

4

18

10

12

6

女生(人)

2

20

16

8

4

(Ⅰ)請將下面的列聯(lián)表補(bǔ)充完整:

睡眠充足

睡眠不足

合計(jì)

男生(人)

32

女生(人)

12

總計(jì)

100

(Ⅱ)根據(jù)已完成的2×2列聯(lián)表,判斷是否有90%的把握認(rèn)為“睡是否充足與性別有關(guān)”?

附:參考公式

P(K2≥k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.636

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)的零點(diǎn),.

(1)求實(shí)數(shù)的值;

(2)若不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)若方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)設(shè),曲線在點(diǎn)處的切線在軸上的截距為,求的最小值;

(2)若只有一個(gè)零點(diǎn),且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,由甲、乙兩個(gè)元件組成一個(gè)并聯(lián)電路,每個(gè)元件可能正;蚴.設(shè)事件A=“甲元件正!,B=“乙元件正!.

1)寫出表示兩個(gè)元件工作狀態(tài)的樣本空間;

2)用集合的形式表示事件AB以及它們的對立事件;

3)用集合的形式表示事件和事件,并說明它們的含義及關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)fx)的最小值為1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;

3)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案