【題目】在△ABC中,D為BC的中點,∠BAD+∠C≥90°. (Ⅰ)求證:sin2C≤sin2B;
(Ⅱ)若cos∠BAD=﹣ ,AB=2,AD=3,求AC.
【答案】證明:令∠BAD=α,∠CAD=β, ∵∠BAD+∠C≥90,
∴α≥90°﹣C,β≤90°﹣B,
∴sinα≥sin(90°﹣C)=cosC,sinβ≤sin(90°﹣B)=cosB,
∵D為BC的中點,
∴S△ABD=S△ACD ,
∴ cADsinα= bADsinβ,
∴csinα=bsinβ,
∴ccosC≤bcosB
∴sinCcosC≤sinBcosB
∴sin2C≤sin2B;
(Ⅱ)在△ABD中,BD2=AB2+AD2﹣2ADABcos∠BAD=4+9﹣12×(﹣ )=16,
∴BD=4,
∴cos∠ADB= = ,
在△ADC中,CD=BD=4,cos∠ADC=﹣cos∠ADB=﹣ ,
∴AC2=9+16﹣2×3×4×(﹣ )=46,
∴AC= .
【解析】(Ⅰ)∠BAD=α,∠CAD=β,根據(jù)正弦函數(shù)的圖象和性質(zhì)得到sinα≥cosC,sinβ≤cosB,再根據(jù)三角形面積公式可得csinα=bsinβ,即可得到ccosC≤bcosB再根據(jù)正弦定理和二倍角公式即可求出,(Ⅱ)根據(jù)余弦定理和夾角公式即可求出.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程 =1表示的曲線為C,給出以下四個判斷:
①當1<t<4時,曲線C表示橢圓;
②當t>4或t<1時曲線C表示雙曲線;
③若曲線C表示焦點在x軸上的橢圓,則1<t< ;
④若曲線C表示焦點在x軸上的雙曲線,則t>4,
其中判斷正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體ABCDEF中,四邊形ABCD是邊長為2的正方形,EF∥平面ABCD,EF=1,F(xiàn)B=FC,∠BFC=90°,AE= .
(1)求證:AB⊥平面BCF;
(2)求直線AE與平面BDE所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過村莊A有兩條夾角60°為的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個倉庫M,N(異于村莊A),要求PM=PN=MN=2(單位:千米).記∠AMN=θ.
(1)將AN,AM用含θ的關(guān)系式表示出來;
(2)如何設(shè)計(即AN,AM為多長時),使得工廠產(chǎn)生的噪聲對居民的影響最。垂S與村莊的距離AP最大)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸入的x為4,則運行的次數(shù)與輸出x的值分別為( )
A.5.730
B.5.729
C.4.244
D.4.243
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知h(x)=|2x﹣1|+m|x+3|(m>0),且h(x)的最小值是7. (Ⅰ)求m的值;
(Ⅱ)求出當h(x)取得最小值時x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,直線y= x(a≠0)為曲線y=f(x)的一條切線.
(1)求實數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)g(x)=min{f(x),x﹣ }(x>0),若函數(shù)h(x)=g(x)﹣bx2為增函數(shù),求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列選項中說法正確的是( )
A.命題“p∨q為真”是命題“p∧q為真”的必要條件
B.向量 , 滿足 ,則 與 的夾角為銳角
C.若am2≤bm2 , 則a≤b
D.“?x0∈R,x02﹣x0≤0”的否定是“?x∈R,x2﹣x≥0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】河南多地遭遇年霾,很多學(xué)校調(diào)整元旦放假時間,提前放假讓學(xué)生們在家躲霾.鄭州市根據(jù)《鄭州市人民政府辦公廳關(guān)于將重污染天氣黃色預(yù)警升級為紅色預(yù)警的通知》,自12月29日12時將黃色預(yù)警升級為紅色預(yù)警,12月30日0時啟動Ⅰ級響應(yīng),明確要求“幼兒園、中小學(xué)等教育機構(gòu)停課,停課不停學(xué)”.學(xué)生和家長對停課這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學(xué)習不贊成的,某調(diào)查機構(gòu)為了了解公眾對該舉措的態(tài)度,隨機調(diào)查采訪了50人,將調(diào)查情況整理匯總成如表:
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 6 | 9 | 6 | 3 | 4 |
(Ⅰ)請在圖中完成被調(diào)查人員年齡的頻率分布直方圖;
(Ⅱ)若從年齡在[25,35),[65,75]兩組采訪對象中各隨機選取2人進行深度跟蹤調(diào)查,選中4人中不贊成這項舉措的人數(shù)為X,求隨機變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com