【題目】已知函數(shù)f(x)=,g(x)=,若函數(shù)y=f(g(x))+a有三個不同的零點x1,x2,x3(其中x1<x2<x3),則2g(x1)+g(x2)+g(x3)的取值范圍為______

【答案】

【解析】

首先研究函數(shù)和函數(shù)的性質,然后結合韋達定理和函數(shù)的性質求解2gx1)+gx2)+gx3)的取值范圍即可.

由題意可知:

將對勾函數(shù)的圖象向右平移一個單位,再向上平移一個單位即可得到函數(shù)的圖象,其圖象如圖所示:

可得,

據(jù)此可知在區(qū)間上單調遞增,在區(qū)間上單調遞減,

繪制函數(shù)圖象如圖所示:

的最大值為

函數(shù)yfgx))+a有三個不同的零點,則

,則

整理可得:,由韋達定理有:.

滿足題意時,應有:,,

.

【點睛】

本題主要考查導數(shù)研究函數(shù)的性質,等價轉化的數(shù)學思想,復合函數(shù)的性質及其應用等知識,意在考查學生的轉化能力和計算求解能力.

型】填空
束】
17

【題目】已知等比數(shù)列{}的前n項和為,且滿足2+m(m∈R).

(Ⅰ)求數(shù)列{}的通項公式;

(Ⅱ)若數(shù)列{}滿足,求數(shù)列{}的前n項和

【答案】(Ⅰ)(Ⅱ)

【解析】

()法一:由前n項和與數(shù)列通項公式的關系可得數(shù)列的通項公式為;

法二:由題意可得,則,據(jù)此可得數(shù)列的通項公式為.

Ⅱ)由(Ⅰ)可得,裂項求和可得.

()法一:

,

時,,即,

,當時符合上式,所以通項公式為.

法二:

從而有

所以等比數(shù)列公比,首項,因此通項公式為.

Ⅱ)由(Ⅰ)可得,

,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】近年空氣質量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重大氣污染可引起心悸、呼吸困難等心肺疾病為了解某市心肺疾病是否與性別有關,在某醫(yī)院隨機對入院的50人進行問卷調查,得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

20

5

25

10

15

25

合計

30

20

50

Ⅰ)用分層抽樣的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?

Ⅱ)在上述抽取的6人中選2人,求恰好有1名女性的概率;

Ⅲ)為了研究心肺疾病是否與性別有關,請計算出統(tǒng)計量,你有多大把握認為心肺疾病與性別有關?(結果保留三個有效數(shù)字)

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024/p>

6.635

7.879

10.828

參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù),且的導函數(shù),則( )

A. 24 B. -24 C. 10 D. -10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要得到函數(shù)f(x)=2sinxcosx,x∈R的圖象,只需將函數(shù)g(x)=2cos2x﹣1,x∈R的圖象(
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】南宋數(shù)學家秦九韶早在《數(shù)書九章》中就獨立創(chuàng)造了已知三角形三邊求其面積的公式:“以小斜冪并大斜冪,減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減之,以四約之,為實,一為從隅,開方得積.”(即:S= ,a>b>c),并舉例“問沙田一段,有三斜(邊),其小斜一十三里,中斜一十四里,大斜一十五里,欲知為田幾何?”則該三角形田面積為

A. 82平方里 B. 84平方里

C. 85平方里 D. 83平方里

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.

(Ⅰ)請分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數(shù)n的函數(shù)關系式;

(Ⅱ)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標滿足如圖所示的直方圖,其中當某天的派送量指標在(,]n=1,2,3,4,5)時,日平均派送量為50+2n單.若將頻率視為概率,回答下列問題:

①根據(jù)以上數(shù)據(jù),設每名派送員的日薪為X(單位:元),試分別求出甲、乙兩種方案的日薪X的分布列,數(shù)學期望及方差;

②結合①中的數(shù)據(jù),根據(jù)統(tǒng)計學的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由。

(參考數(shù)據(jù):0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)

【答案】甲方案的函數(shù)關系式為: 乙方案的函數(shù)關系式為:(Ⅱ)①見解析,②見解析.

【解析】

由題意可得甲方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關系式為: , 乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關系式為:.

①由題意求得X的分布列,據(jù)此計算可得,,.

②答案一:由以上的計算可知,遠小于,即甲方案日工資收入波動相對較小,所以小明應選擇甲方案.

答案二:由以上的計算結果可以看出,,所以小明應選擇乙方案.

Ⅰ)甲方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關系式為: ,

乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關系式為:

①由已知,在這100天中,該公司派送員日平均派送單數(shù)滿足如下表格:

單數(shù)

52

54

56

58

60

頻率

0.2

0.3

0.2

0.2

0.1

所以的分布列為:

152

154

156

158

160

0.2

0.3

0.2

0.2

0.1

所以

所以的分布列為:

140

152

176

200

0.5

0.2

0.2

0.1

所以

②答案一:由以上的計算可知,雖然,但兩者相差不大,且遠小于,即甲方案日工資收入波動相對較小,所以小明應選擇甲方案.

答案二:由以上的計算結果可以看出,,即甲方案日工資期望小于乙方案日工資期望,所以小明應選擇乙方案.

【點睛】

本題主要考查頻率分布直方圖,數(shù)學期望與方差的含義與實際應用等知識,意在考查學生的轉化能力和計算求解能力.

型】解答
束】
20

【題目】已知橢圓C:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,且離心率為,M為橢圓上任意一點,當∠F1MF2=90°時,△F1MF2的面積為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點A是橢圓C上異于橢圓頂點的一點,延長直線AF1,AF2分別與橢圓交于點B,D,設直線BD的斜率為k1,直線OA的斜率為k2,求證:k1·k2等于定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,△ABC為正三角形,AB⊥AD,AC⊥CD,PC= AC,平面PAC⊥平面ABCD.

(1)點E在棱PC上,試確定點E的位置,使得PD⊥平面ABE;
(2)求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校數(shù)學課外興趣小組為研究數(shù)學成績是否與性別有關,先統(tǒng)計本校高三年級每個學生一學期數(shù)學成績平均分(采用百分制),剔除平均分在40分以下的學生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,按性別分為兩組,并將兩組學生成績分為6組,得到如下所示頻數(shù)分布表.

(1)估計男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點值作代表),從計算結果看,數(shù)學成績與性別是否有關;

(2)規(guī)定80分以上為優(yōu)分(含80分),請你根據(jù)已知條件作出2×2列聯(lián)表并判斷是否有90%以上的把握認為“數(shù)學成績與性別有關”.

附表及公式:

P(K2k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一商場對每天進店人數(shù)和商品銷售件數(shù)進行了統(tǒng)計對比,得到如下表格:

其中=1,2,3,4,5,6,7.

(1)以每天進店人數(shù)為橫軸,每天商品銷售件數(shù)為縱軸,畫出散點圖;

(2)求線性回歸方程;(結果保留到小數(shù)點后兩位)

(參考數(shù)據(jù):=3 245, =25, =15.43, =5 075)

(3)預測進店人數(shù)為80人時,商品銷售的件數(shù).(結果保留整數(shù))

查看答案和解析>>

同步練習冊答案