【題目】在全國(guó)第五個(gè)扶貧日到來之前,某省開展精準(zhǔn)扶貧,攜手同行的主題活動(dòng),某貧困縣調(diào)查基層干部走訪貧困戶數(shù)量.甲鎮(zhèn)有基層干部60人,乙鎮(zhèn)有基層干部60人,丙鎮(zhèn)有基層干部80人,每人都走訪了若干貧困戶,按照分層抽樣,從甲、乙、丙三鎮(zhèn)共選20名基層干部,統(tǒng)計(jì)他們走訪貧困戶的數(shù)量,并將走訪數(shù)量分成,,,5組,繪制成如圖所示的頻率分布直方圖.

1)求這20人中有多少人來自丙鎮(zhèn),并估計(jì)甲、乙、丙三鎮(zhèn)的基層干部走訪貧困戶戶數(shù)的中位數(shù)(精確到整數(shù)位);

2)如果把走訪貧困戶達(dá)到或超過35戶視為工作出色,求選出的20名基層干部中工作出色的人數(shù),并從中選2人做交流發(fā)言,求這2人中至少有一人走訪的貧困戶在的概率.

【答案】1282

【解析】

1)按照比例得出這20人中來自丙鎮(zhèn)的人數(shù),利用頻率直方圖求中位數(shù)的方法求解即可;

2)按照比例得出走訪戶數(shù)在,的人數(shù),列舉出6人中抽取2人的所有情況,再由古典概型概率公式計(jì)算即可.

解:(120人中來自丙鎮(zhèn)的有人.

,

∴估計(jì)中位數(shù)

220名基層干部中工作出色的人數(shù)為

其中,走訪戶數(shù)在的有人,設(shè)為,,

走訪戶數(shù)在的有人,設(shè)為,

6人中抽取2人有,,,,,,,,,,,共15

其中2人走訪貧困戶都在的有,,,,共6種.

故所求概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機(jī)廠商推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行評(píng)分,評(píng)分的頻數(shù)分布表如下:

女性用戶

分值區(qū)間

[50,60

[60,70

[7080

[80,90

[90,100]

頻數(shù)

20

40

80

50

10

男性用戶

分值區(qū)間

[5060

[60,70

[70,80

[8090

[90,100]

頻數(shù)

45

75

90

60

30

(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評(píng)分的波動(dòng)大。ú挥(jì)算具體值,給出結(jié)論即可);

(2)把評(píng)分不低于70分的用戶稱為評(píng)分良好用戶,能否有的把握認(rèn)為評(píng)分良好用戶與性別有關(guān)?

參考附表:

參考公式,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高一期中考試結(jié)束后,從高一年級(jí)1000名學(xué)生中任意抽取50名學(xué)生,將這50名學(xué)生的某一科的考試成績(jī)(滿分150分)作為樣本進(jìn)行統(tǒng)計(jì),并作出樣本成績(jī)的頻率分布直方圖(如圖).

(1)由于工作疏忽,將成績(jī)[130,140)的數(shù)據(jù)丟失,求此區(qū)間的人數(shù)及頻率分布直方圖的中位數(shù);(結(jié)果保留兩位小數(shù))

(2)若規(guī)定考試分?jǐn)?shù)不小于120分為優(yōu)秀,現(xiàn)從樣本的優(yōu)秀學(xué)生中任意選出3名學(xué)生,參加學(xué)習(xí)經(jīng)驗(yàn)交流會(huì).設(shè)X表示參加學(xué)習(xí)經(jīng)驗(yàn)交流會(huì)的學(xué)生分?jǐn)?shù)不小于130分的學(xué)生人數(shù),求X的分布列及期望;

(3)視樣本頻率為概率.由于特殊原因,有一個(gè)學(xué)生不能到學(xué)校參加考試,根據(jù)以往考試成績(jī),一般這名學(xué)生的成績(jī)應(yīng)在平均分左右.試根據(jù)以上數(shù)據(jù),說明他若參加考試,可能得多少分?(每組數(shù)據(jù)以區(qū)問的中點(diǎn)值為代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在交通工程學(xué)中,常作如下定義:交通流量(輛/小時(shí)):?jiǎn)挝粫r(shí)間內(nèi)通過道路上某一橫斷面的車輛數(shù);車流速度(千米/小時(shí)):?jiǎn)挝粫r(shí)間內(nèi)車流平均行駛過的距離;車流密度(輛/千米):?jiǎn)挝婚L(zhǎng)度道路上某一瞬間所存在的車輛數(shù). 一般的,滿足一個(gè)線性關(guān)系,即(其中是正數(shù)),則以下說法正確的是

A. 隨著車流密度增大,車流速度增大

B. 隨著車流密度增大,交通流量增大

C. 隨著車流密度增大,交通流量先減小,后增大

D. 隨著車流密度增大,交通流量先增大,后減小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠的機(jī)器上存在一種易損元件,這種元件發(fā)生損壞時(shí),需要及時(shí)維修. 現(xiàn)有甲、乙兩名工人同時(shí)從事這項(xiàng)工作,下表記錄了某月1日到10日甲、乙兩名工人分別維修這種元件的件數(shù).

日期

1

2

3

4

5

6

7

8

9

10

甲維修的元件數(shù)

3

5

4

6

4

6

3

7

8

4

乙維修的元件數(shù)

4

7

4

5

5

4

5

5

4

7

1)從這天中,隨機(jī)選取一天,求甲維修的元件數(shù)不少于5件的概率;

2)試比較這10天中甲維修的元件數(shù)的方差與乙維修的元件數(shù)的方差的大小.(只需寫出結(jié)論);

3)由于甲、乙的任務(wù)量大,擬增加工人,為使增加工人后平均每人每天維修的元件不超過3件,請(qǐng)利用上表數(shù)據(jù)估計(jì)最少需要增加幾名工人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,點(diǎn)在橢圓上,且的最小值是為坐標(biāo)原點(diǎn)).

1)求橢圓的標(biāo)準(zhǔn)方程.

2)已知?jiǎng)又本與圓相切,且與橢圓交于,兩點(diǎn).是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“偉大的變革—慶祝改革開放周年大型展覽”于日在中國(guó)國(guó)家博物館閉幕,本次特展緊扣“改革開放年光輝歷程”的主線,多角度、全景式描繪了我國(guó)改革開放年波瀾壯闊的歷史畫卷.據(jù)統(tǒng)計(jì),展覽全程呈現(xiàn)出持續(xù)火爆的狀態(tài),現(xiàn)場(chǎng)觀眾累計(jì)達(dá)萬人次,參展人數(shù)屢次創(chuàng)造國(guó)家博物館參觀紀(jì)錄,網(wǎng)上展館點(diǎn)擊瀏覽總量達(dá)億次.

下表是月參觀人數(shù)(單位:萬人)統(tǒng)計(jì)表

日期

人數(shù)

日期

人數(shù)

根據(jù)表中數(shù)據(jù)回答下列問題:

(1)請(qǐng)將月前半月(日)和后半月(日)參觀人數(shù)統(tǒng)計(jì)對(duì)比莖葉圖填補(bǔ)完整,并通過莖葉圖比較兩組數(shù)據(jù)方差的大。ú灰笥(jì)算出具體值,得出結(jié)論即可);

(2)將月參觀人數(shù)數(shù)據(jù)用該天的對(duì)應(yīng)日期作為樣本編號(hào),現(xiàn)從中抽樣天的樣本數(shù)據(jù).若抽取的樣本編號(hào)是以為公差的等差數(shù)列,且數(shù)列的第項(xiàng)為,求抽出的這個(gè)樣本數(shù)據(jù)的平均值;

(3)根據(jù)國(guó)博以往展覽數(shù)據(jù)及調(diào)查統(tǒng)計(jì)信息可知,單日入館參觀人數(shù)為(含,單位:萬人)時(shí),參觀者的體驗(yàn)滿意度最佳,在從中抽出的樣本數(shù)據(jù)中隨機(jī)抽取三天的數(shù)據(jù),參觀者的體驗(yàn)滿意度為最佳的天數(shù)記為,求的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長(zhǎng)為1的正方體中,E,F(xiàn)分別為線段CD和上的動(dòng)點(diǎn),且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點(diǎn)的三個(gè)面上的正投影的面積之和( 。

A. 有最小值B. 有最大值C. 為定值3D. 為定值2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率,且過點(diǎn)

(1)求橢圓的方程;

(2)如圖,過橢圓的右焦點(diǎn)作兩條相互垂直的直線交橢圓分別于,且滿足, ,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案