【題目】在四棱錐中,底面為直角梯形,,,,為線段的中點(diǎn),底面,點(diǎn)是棱的中點(diǎn),平面與棱相交于點(diǎn)

1)求證:;

2)若所成的角為,求直線與平面所成角的正弦值.

【答案】1)見(jiàn)解析(2

【解析】

1)首先證明四邊形為平行四邊形,得到,然后可得平面,然后由線面平行的性質(zhì)定理可證

2)以為原點(diǎn),軸,軸,軸建立空間直角坐標(biāo)系,設(shè),首先利用所成的角為求出,然后算出平面的法向量坐標(biāo)和的坐標(biāo),然后可算出答案.

1)證明:因?yàn)?/span>中點(diǎn),且

所以,又因?yàn)?/span>,所以

所以四邊形為平行四邊形

所以,因?yàn)?/span>平面,平面,所以平面

因?yàn)?/span>平面,平面平面

所以

2)由(1)可得

因?yàn)?/span>,所以,且平面

所以以為原點(diǎn),軸,軸,軸建立空間直角坐標(biāo)系

設(shè),,,

,,因?yàn)?/span>所成角為

所以,

解得

所以,

設(shè)平面得一個(gè)法向量

,可得,可取

設(shè)直線與平面所成的角為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是拋物線上的一點(diǎn),其焦點(diǎn)為點(diǎn),且拋物線在點(diǎn)處的切線交圓于不同的兩點(diǎn),.

1)若點(diǎn),求的值;

2)設(shè)點(diǎn)為弦的中點(diǎn),焦點(diǎn)關(guān)于圓心的對(duì)稱(chēng)點(diǎn)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線為曲線上一動(dòng)點(diǎn),過(guò)作兩條漸近線的垂線,垂足分別是.

1)當(dāng)運(yùn)動(dòng)到時(shí),求的值;

2)設(shè)直線(不與軸垂直)與曲線交于兩點(diǎn),與軸正半軸交于點(diǎn),與軸交于點(diǎn),若,,且,求證為定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:,,,,后得到如圖的頻率分

布直方圖.

(1)求圖中實(shí)數(shù)的值;

(2)若該校高一年級(jí)共有學(xué)生1000人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù).

(3)若從樣本中數(shù)學(xué)成績(jī)?cè)?/span>,兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,試用列舉法求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值大于10的槪率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】武漢市掀起了轟轟烈烈的十日大會(huì)戰(zhàn),要在10天之內(nèi),對(duì)武漢市民做一次全員檢測(cè),徹底摸清武漢市的詳細(xì)情況.某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:

方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)1000.

方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn));否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn)這樣,該組個(gè)人的血總共需要化驗(yàn). 假設(shè)此次檢驗(yàn)中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.

1)設(shè)方案②中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;

2)設(shè). 試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以減少多少次?(最后結(jié)果四舍五入保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(13分)

在平面直角坐標(biāo)系xOy中,拋物線上異于坐標(biāo)原點(diǎn)O的兩不同動(dòng)點(diǎn)A、B滿足(如圖所示).

)求得重心G(即三角形三條中線的交點(diǎn))的軌跡方程;

的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的內(nèi)角的對(duì)邊分別為.

1)求;

2)若,上的點(diǎn),平分,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的右頂點(diǎn)為A,左焦點(diǎn)為,過(guò)點(diǎn)A的直線與橢圓C的另一個(gè)交點(diǎn)為B,軸,點(diǎn)在直線.

I)求的面積;

II)過(guò)點(diǎn)S的直線與橢圓C交于P,Q兩點(diǎn),且的面積是的面積的6倍,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且與拋物線交于,兩點(diǎn),為坐標(biāo)原點(diǎn))的面積為

(1)求橢圓的方程;

(2)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長(zhǎng)軸端點(diǎn)),為左、右焦點(diǎn),的延長(zhǎng)線與橢圓交于點(diǎn),的延長(zhǎng)線與橢圓交于點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案