【題目】設關于x的不等式|x﹣2|<a(a∈R)的解集為A,且 ∈A,﹣ A.
(1)對任意的x∈R,|x﹣1|+|x﹣3|≥a2+a恒成立,且a∈N,求a的值.
(2)若a+b=1,a,b∈R+ , 求 + 的最小值,并指出取得最小值時a的值.
【答案】
(1)解:關于x的不等式|x﹣2|<a(a∈R)的解集為A,且 ∈A,﹣ A,
則a>| ﹣2|且a≤|﹣ ﹣2|,即有 <a≤ ,①
x∈R,|x﹣1|+|x﹣3|≥|(x﹣1)﹣(x﹣3)|=2,即有
|x﹣1|+|x﹣3|的最小值為2,
x∈R,|x﹣1|+|x﹣3|≥a2+a恒成立,即有
a2+a≤2,解得﹣2≤a≤1,②
由①②可得 <a≤1,
由a∈N,則a=1
(2)解:若a+b=1,a>0,b>0,
則 + = + = +( + )
≥ +2 = ,
當且僅當 = ,即a= ∈( , ],b= 時,
取得最小值,且為
【解析】(1)由 ∈A,﹣ A可得 <a≤ ,再由絕對值不等式的性質可得|x﹣1|+|x﹣3|的最小值為2,結合恒成立思想,可得a2+a≤2,解出不等式,求交集,再由a∈N,即可得到a;(2)由條件可得 + = + ,運用基本不等式求出最小值,同時求出取等號的a的值.
【考點精析】通過靈活運用基本不等式在最值問題中的應用和絕對值不等式的解法,掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”;含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=2x3+3ax2+3bx+8在x=1及x=2時取得極值.
(1)求a,b的值;
(2)求曲線f(x)在x=0處的切線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PB上,PD∥平面MAC,PA=PD= ,AB=4.
(1)求證:M為PB的中點;
(2)求二面角B﹣PD﹣A的大;
(3)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)對任意實數(shù)x,y恒有f(x)=f(y)+f(x﹣y),當x>0時,f(x)<0,且f(2)=﹣3.
(1)求f(0),并判斷函數(shù)f(x)的奇偶性;
(2)證明:函數(shù)f(x)在R上的單調遞減;
(3)若不等式f(2x﹣3)﹣f(﹣22x)<f(k2x)+6在區(qū)間(﹣2,2)內恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉動如圖所示圓盤,當指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎·
乙商場:從裝有2個白球、2個藍球和2個紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是,若從盒子中一次性摸出2球,且摸到的是2個相同顏色的球,即為中獎.
(Ⅰ)求實數(shù)的值;
(Ⅱ)試問:購買該商品的顧客在哪家商場中獎的可能性大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】解答題。
(1)已知集合A={x|ax2﹣3x+1=0,a∈R},若A中只有一個元素,求a的取值范圍.
(2)集合A={x|x2﹣6x+5<0},C={x|3a﹣2<x<4a﹣3},若CA,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f (x)= .
(1)求f(x)的定義域;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調性,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對某商店一個月內每天的顧客人數(shù)進行統(tǒng)計,得到樣本的莖葉圖(如圖所示).則該樣本的中位數(shù)、眾數(shù)、極差分別是( )
A.46 45 56
B.46 45 53
C.47 45 56
D.45 47 53
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com