【題目】已知函數(shù),其中

(1)試討論函數(shù)的單調(diào)性;

(2),且函數(shù)有兩個零點,求實數(shù)的最小值

【答案】(1)見解析;(2)2

【解析】

求出,分別討論的范圍,求出單調(diào)性

等價于有兩個零點,結(jié)合中的結(jié)果求導(dǎo)后判定函數(shù)的單調(diào)性,研究零點問題

(1) ,則

當(dāng)時,,所以函數(shù)上單調(diào)遞增;

當(dāng)時,若 ,則,若 ,則

所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增;

綜上可知,當(dāng)時,函數(shù)上單調(diào)遞增;當(dāng)時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增;

(2) 函數(shù)有兩個零點等價于有兩個零點.

由(1)可知,當(dāng)時,函數(shù)上單調(diào)遞增,最多一個零點,不符合題意。所以,又當(dāng)時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增;所從.

要使有兩個零點,則有.

設(shè),則,

所以函數(shù)上單調(diào)遞減.又

所以存在,當(dāng)時,.

即存在,當(dāng)時,

又因為,所以實數(shù)的最小值等于2.

此時,當(dāng)時,,當(dāng)時,,有兩個零點.故實數(shù)的最小值等于2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是()

A. 銳角是第一象限的角,所以第一象限的角都是銳角;

B. 如果向量,則

C. 中,記,則向量可以作為平面ABC內(nèi)的一組基底;

D. ,都是單位向量,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某服裝廠每天的固定成本是30000元,每天最大規(guī)模的生產(chǎn)量是.每生產(chǎn)一件服裝,成本增加100元,生產(chǎn)服裝的收入函數(shù)是,記,分別為每天生產(chǎn)服裝的利潤和平均利潤

1當(dāng)時,每天生產(chǎn)量為多少時,利潤有最大值;

2每天生產(chǎn)量為多少時,平均利潤有最大值,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體中,點是棱上的一個動點,平面交棱于點給出下列命題:

①存在點,使得//平面;

對于任意的點,平面平面

存在點,使得平面;

④對于任意的點,四棱錐的體積均不變.

其中正確命題的序號是______.(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面, , , , .

(1)求證: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的三邊長分別為a、b、c,且滿足.

(1)是否存在邊長均為整數(shù)的ABC?若存在,求出三邊長;若不存在,說明理由.

(2),,,求出ABC周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P是橢圓上的動點,為橢圓的左、右焦點,O為坐標(biāo)原點,若M的角平分線上的一點,且F1MMP,則|OM|的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)f(x)的單調(diào)遞增區(qū)間;

2)若,求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2006 8 月中旬 , 湖南省資興市遇到了百年不遇的洪水災(zāi)害 . 在資興市的東江湖岸邊的點 O (可視湖岸為直線) 停放著一只救人的小船,由于纜繩突然斷開,小船被風(fēng)刮跑,其方向與湖岸成 15°,, 速度為2.5 km/ h ,同時,岸上有一人從同一地點開始追趕小船 .已知他在岸上追的速度為4 km/ h ,在水中游的速度為 2 km/h .問此人能否追上小船? 若小船速度改變 ,則小船能被此人追上的最大速度是多少 ?

查看答案和解析>>

同步練習(xí)冊答案