【題目】已知ABC的三邊長(zhǎng)分別為a、b、c,且滿(mǎn)足.

(1)是否存在邊長(zhǎng)均為整數(shù)的ABC?若存在,求出三邊長(zhǎng);若不存在,說(shuō)明理由.

(2),,求出ABC周長(zhǎng)的最小值.

【答案】(1) 存在三邊長(zhǎng)均為整數(shù)的ABC,其三邊長(zhǎng)分別為4、5、63、7、8. (2)

【解析】

(1)不妨設(shè),顯然.

,此時(shí).

,可得.矛盾.

c只能去2、3、4.

當(dāng)c=2時(shí),,有.

,故無(wú)解.

當(dāng)時(shí),,即.

,故

解得

能構(gòu)成三角形的只有,.

當(dāng)時(shí),同理解得,.

而能構(gòu)成三角形的只有,.

因此,存在三邊長(zhǎng)均為整數(shù)的ABC,其三邊長(zhǎng)分別為4、5、63、7、8.

(2)由,

.

.

ABC的周長(zhǎng)最小值為,當(dāng)僅當(dāng)且時(shí),取得此最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐最長(zhǎng)的棱的棱長(zhǎng)為( )

A. 3 B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等腰梯形中,,,的中點(diǎn),將梯形旋轉(zhuǎn),得到梯形(如圖).

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中共有8個(gè)球,其中有3個(gè)白球,5個(gè)黑球,這些球除顏色外完全相同.從袋中隨機(jī)取出一球,如果取出白球,則把它放回袋中;如果取出黑球,則該黑球不再放回,并且另補(bǔ)一個(gè)白球放入袋中.重復(fù)上述過(guò)程次后,袋中白球的個(gè)數(shù)記為

1)求隨機(jī)變量的概率分布及數(shù)學(xué)期望

2)求隨機(jī)變量的數(shù)學(xué)期望關(guān)于的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

(1)試討論函數(shù)的單調(diào)性;

(2),且函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷(xiāo),規(guī)定凡在該超市購(gòu)物滿(mǎn)400元的顧客,均可獲得一次摸獎(jiǎng)機(jī)會(huì).摸獎(jiǎng)規(guī)則如下:獎(jiǎng)盒中放有除顏色不同外其余完全相同的4個(gè)球(紅、黃、黑、白).顧客不放回的每次摸出1個(gè)球,若摸到黑球則摸獎(jiǎng)停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).

1)求1名顧客摸球2次摸獎(jiǎng)停止的概率;

2)記X1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)=x2+bx+c,若對(duì)任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤6,則b的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(1)求曲線(xiàn),的直角坐標(biāo)方程;

(2)判斷曲線(xiàn),是否相交,若相交,請(qǐng)求出交點(diǎn)間的距離;若不相交,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一走廊拐角處的橫截面如圖所示,已知內(nèi)壁和外壁都是半徑為1m的四分之一圓弧,分別與圓弧相切于兩點(diǎn)且兩組平行墻壁間的走廊寬度都是1m.

1若水平放置的木棒的兩個(gè)端點(diǎn)分別在外壁,且木棒與內(nèi)壁圓弧相切于點(diǎn)設(shè)試用表示木棒的長(zhǎng)度

2若一根水平放置的木棒能通過(guò)該走廊拐角處,求木棒長(zhǎng)度的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案