【題目】已知直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),曲線(xiàn)C的極坐標(biāo)方程是 以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(﹣1,0),直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn).
(1)寫(xiě)出直線(xiàn)l的極坐標(biāo)方程與曲線(xiàn)C的普通方程;
(2)線(xiàn)段MA,MB長(zhǎng)度分別記|MA|,|MB|,求|MA||MB|的值.
【答案】
(1)
解:將直線(xiàn)l的參數(shù)方程消去參數(shù)t得:x=﹣1+y,
∴直線(xiàn)l的極坐標(biāo)方程 ,
曲線(xiàn)C的極坐標(biāo)方程化成:ρsinθ=ρ2cos2θ,
其普通方程是:y=x2
(2)
解:將 代入y=x2
得 ,3分
∵點(diǎn)M(﹣1,0)在直線(xiàn)上,
∴|MA||MB|=|t1t2|=2
【解析】(1)將直線(xiàn)l的參數(shù)方程消去參數(shù)t得直線(xiàn)的普通方程,再化成直線(xiàn)l的極坐標(biāo)方程,曲線(xiàn)C的極坐標(biāo)方程化成:ρsinθ=ρ2cos2θ,最后再化成普通方程即可;(2)將直線(xiàn)的參數(shù)方程代入y=x2得關(guān)于t的一元二次方程,再結(jié)合根與系數(shù)的關(guān)系即得|MA||MB|=|t1t2|=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查某社區(qū)中學(xué)生的課外活動(dòng),對(duì)該社區(qū)的100名中學(xué)生進(jìn)行了調(diào)研,隨機(jī)抽取了若干名,年齡全部介于13與18之間,將年齡按如下方式分成五組:第一組;第二組;第五組.按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三個(gè)組的頻率之比為,且第二組的頻數(shù)為4.
(1)試估計(jì)這100名中學(xué)生中年齡在內(nèi)的人數(shù);
(2)求調(diào)研中隨機(jī)抽取的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(-x)sin x-cos2x.
(1)求f(x)的最小正周期和最大值;
(2)討論f(x)在()上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=cos(2x+ )+2cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移 個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間 上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲船以每小時(shí)30海里的速度向正北方向航行,乙船按固定方向勻速直線(xiàn)航行.當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105°方向的B1處,此時(shí)兩船相距20海里.當(dāng)甲船航行20分鐘到達(dá)A2處時(shí),乙船航行到甲船的北偏西120°方向的B2處,此時(shí)兩船相距10海里,問(wèn)乙船每小時(shí)航行多少海里?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某奶茶店對(duì)某時(shí)間段的奶茶銷(xiāo)售量及其價(jià)格進(jìn)行調(diào)查,統(tǒng)計(jì)出售價(jià)元和銷(xiāo)售量杯之間的一組數(shù)據(jù)如下表所示:
價(jià)格 | 5 | 5.5 | 6.5 | 7 |
銷(xiāo)售量 | 12 | 10 | 6 | 4 |
通過(guò)分析,發(fā)現(xiàn)銷(xiāo)售量對(duì)奶茶的價(jià)格具有線(xiàn)性相關(guān)關(guān)系.
(1)求銷(xiāo)售量對(duì)奶茶的價(jià)格的回歸直線(xiàn)方程;
(2)欲使銷(xiāo)售量為13杯,則價(jià)格應(yīng)定為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)用五點(diǎn)法畫(huà)出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(2)指出f(x)的周期、振幅、初相、對(duì)稱(chēng)軸;
(3)此函數(shù)圖象由y=sinx的圖象怎樣變換得到?(注:y軸上每一豎格長(zhǎng)為1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線(xiàn)x2=4y的焦點(diǎn)F的直線(xiàn)l與拋物線(xiàn)相交于A、B兩點(diǎn).
(1)設(shè)拋物線(xiàn)在A、B處的切線(xiàn)的交點(diǎn)為M,若點(diǎn)M的橫坐標(biāo)為2,求△ABM的外接圓方程.
(2)若直線(xiàn)l與橢圓 + =1的交點(diǎn)為C,D,問(wèn)是否存在這樣的直線(xiàn)l使|AF||CF|=|BF||DF|,若存在,求出l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列是公差為2的等差數(shù)列,數(shù)列滿(mǎn)足,且.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿(mǎn)足,數(shù)列{cn}的前n項(xiàng)和為Tn,若不等式 對(duì)一切n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com