【題目】2016年入冬以來(lái),各地霧霾天氣頻發(fā), 頻頻爆表(是指直徑小于或等于2.5微米的顆粒物),各地對(duì)機(jī)動(dòng)車更是出臺(tái)了各類限行措施,為分析研究車流量與的濃度是否相關(guān),某市現(xiàn)采集周一到周五某一時(shí)間段車流量與的數(shù)據(jù)如下表:

時(shí)間

周一

周二

周三

周四

周五

車流量(萬(wàn)輛)

50

51

54

57

58

的濃度(微克/立方米)

69

70

74

78

79

(1)請(qǐng)根據(jù)上述數(shù)據(jù),在下面給出的坐標(biāo)系中畫出散點(diǎn)圖;

(2)試判斷是否具有線性關(guān)系,若有請(qǐng)求出關(guān)于的線性回歸方程,若沒(méi)有,請(qǐng)說(shuō)明理由;

(3)若周六同一時(shí)間段的車流量為60萬(wàn)輛,試根據(jù)(2)得出的結(jié)論,預(yù)報(bào)該時(shí)間段的的濃度(保留整數(shù)).

參考公式: , .

【答案】(1)詳見(jiàn)解析;(2) .

【解析】試題分析:(1)根據(jù)表中數(shù)據(jù)畫出散點(diǎn)圖即可;

(2)散點(diǎn)圖中各點(diǎn)分布在一條直線附近,判斷x與y是有線性關(guān)系;計(jì)算、,求出回歸系數(shù),寫出線性回歸方程.

試題解析:

(I)散點(diǎn)圖如圖所示;

(II)根據(jù)圖象觀察具有線性正相關(guān)關(guān)系. , ,

那么, ,

,

關(guān)于的線性回歸方程;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)試判斷f (x)的單調(diào)性,并證明你的結(jié)論;
(2)若f (x)為定義域上的奇函數(shù),求函數(shù)f (x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2 ,AD=2,求四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體的表面積及體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四種說(shuō)法: ①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y= + 與y= 都是奇函數(shù);
④函數(shù)y=(x﹣1)2與y=2x1在區(qū)間[0,+∞)上都是增函數(shù).
其中正確的序號(hào)是(把你認(rèn)為正確敘述的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)一種產(chǎn)品,第一年投入資金1000萬(wàn)元,出售產(chǎn)品收入40萬(wàn)元,預(yù)計(jì)以后每年的投入資金是上一年的一半,出售產(chǎn)品所得收入比上一年多80萬(wàn)元,同時(shí),當(dāng)預(yù)計(jì)投入的資金低于20萬(wàn)元時(shí),就按20萬(wàn)元投入,且當(dāng)年出售產(chǎn)品收入與上一年相等.

(1)求第年的預(yù)計(jì)投入資金與出售產(chǎn)品的收入;

(2)預(yù)計(jì)從哪一年起該公司開(kāi)始盈利?(注:盈利是指總收入大于總投入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足;數(shù)列的前項(xiàng)和為,且滿足 , .

(1)求數(shù)列、的通項(xiàng)公式;

(2)是否存在正整數(shù),使得恰為數(shù)列中的一項(xiàng)?若存在,求所有滿足要求的;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò)1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某城市氣象部門的數(shù)據(jù)中,隨機(jī)抽取了100天的空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù)如表:

空氣質(zhì)量指數(shù)t

(0,50]

(50,100]

(100,150]

(150,200]

(200,300]

質(zhì)量等級(jí)

優(yōu)

輕微污染

輕度污染

中度污染

嚴(yán)重污染

天數(shù)K

5

23

22

25

15

10

(1)在該城市各醫(yī)院每天收治上呼吸道病癥總?cè)藬?shù)y與當(dāng)天的空氣質(zhì)量t(t取整數(shù))存在如下關(guān)系y=,且當(dāng)t>300時(shí),y>500估計(jì)在某一醫(yī)院收治此類病癥人數(shù)超過(guò)200人的概率;

(2)若在(1)中,當(dāng)t>300時(shí),y與t的關(guān)系擬合于曲線,現(xiàn)已取出了10對(duì)樣本數(shù)據(jù)(ti,yi)(i=1,2,3,…,10),且,求擬合曲線方程.

(附:線性回歸方程=a+bx中,b=,a=﹣b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)已知函數(shù),其中,且

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案