【題目】在某城市氣象部門(mén)的數(shù)據(jù)中,隨機(jī)抽取了100天的空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù)如表:
空氣質(zhì)量指數(shù)t | (0,50] | (50,100] | (100,150] | (150,200] | (200,300] | |
質(zhì)量等級(jí) | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 嚴(yán)重污染 |
天數(shù)K | 5 | 23 | 22 | 25 | 15 | 10 |
(1)在該城市各醫(yī)院每天收治上呼吸道病癥總?cè)藬?shù)y與當(dāng)天的空氣質(zhì)量t(t取整數(shù))存在如下關(guān)系y=,且當(dāng)t>300時(shí),y>500估計(jì)在某一醫(yī)院收治此類(lèi)病癥人數(shù)超過(guò)200人的概率;
(2)若在(1)中,當(dāng)t>300時(shí),y與t的關(guān)系擬合于曲線(xiàn),現(xiàn)已取出了10對(duì)樣本數(shù)據(jù)(ti,yi)(i=1,2,3,…,10),且,求擬合曲線(xiàn)方程.
(附:線(xiàn)性回歸方程=a+bx中,b=,a=﹣b)
【答案】(1)(2)y=50lnt+250
【解析】試題分析:(1)令解出t的取值范圍,根據(jù)頻數(shù)分布表計(jì)算此范圍內(nèi)的頻率,則此頻率近似等于所求的概率;
(2)令,利用回歸系數(shù)公式求出y關(guān)于x的回歸方程,再得出y關(guān)于t的擬合曲線(xiàn).
試題解析:
(1)令y>200得2t﹣100>200,解得t>150,
∴當(dāng)t>150時(shí),病人數(shù)超過(guò)200人.
由頻數(shù)分布表可知100天內(nèi)空氣指數(shù)t>150的天數(shù)為25+15+10=50.
∴病人數(shù)超過(guò)200人的概率.
(2)令x=lnt,則y與x線(xiàn)性相關(guān), =7, =600,
∴=50,a=600﹣50×7=250.
∴擬合曲線(xiàn)方程為y=50x+250=50lnt+250.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一企業(yè)從某條生產(chǎn)線(xiàn)上隨機(jī)抽取30件產(chǎn)品,測(cè)量這些產(chǎn)品的某項(xiàng)技術(shù)指標(biāo)值,得到如下的頻數(shù)分布表:
頻數(shù) | 2 | 6 | 18 | 4 |
(I)估計(jì)該技術(shù)指標(biāo)值的平均數(shù)和眾數(shù)(以各組區(qū)間的中點(diǎn)值代表該組的取值);
(II) 若或,則該產(chǎn)品不合格,其余的是合格產(chǎn)品,從不合格的產(chǎn)品中隨機(jī)抽取2件,求抽取的2件產(chǎn)品中技術(shù)指標(biāo)值小于的產(chǎn)品恰有1件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年入冬以來(lái),各地霧霾天氣頻發(fā), 頻頻爆表(是指直徑小于或等于2.5微米的顆粒物),各地對(duì)機(jī)動(dòng)車(chē)更是出臺(tái)了各類(lèi)限行措施,為分析研究車(chē)流量與的濃度是否相關(guān),某市現(xiàn)采集周一到周五某一時(shí)間段車(chē)流量與的數(shù)據(jù)如下表:
時(shí)間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車(chē)流量(萬(wàn)輛) | 50 | 51 | 54 | 57 | 58 |
的濃度(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(1)請(qǐng)根據(jù)上述數(shù)據(jù),在下面給出的坐標(biāo)系中畫(huà)出散點(diǎn)圖;
(2)試判斷與是否具有線(xiàn)性關(guān)系,若有請(qǐng)求出關(guān)于的線(xiàn)性回歸方程,若沒(méi)有,請(qǐng)說(shuō)明理由;
(3)若周六同一時(shí)間段的車(chē)流量為60萬(wàn)輛,試根據(jù)(2)得出的結(jié)論,預(yù)報(bào)該時(shí)間段的的濃度(保留整數(shù)).
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知奇函數(shù)
(1)在直角坐標(biāo)系中畫(huà)出y=f(x)的圖象,并指出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,試確定a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知不等式對(duì)任意實(shí)數(shù)恒成立.
(Ⅰ)求實(shí)數(shù)的最小值;
(Ⅱ)若,且滿(mǎn)足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車(chē)流速度v(單位:千米/小時(shí))是車(chē)流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車(chē)流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車(chē)流速度v是車(chē)流密度x的一次函數(shù).
(Ⅰ)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(Ⅱ)當(dāng)車(chē)流密度x為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀(guān)測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/小時(shí))f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且滿(mǎn)足4Sn=an2+2an﹣3(n∈N*),則a2016=( )
A.4029
B.4031
C.4033
D.4035
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的長(zhǎng)半軸為,短半軸為.橢圓的兩個(gè)焦點(diǎn)分別為,,離心率為方程的一根,長(zhǎng)半軸為,短半軸為.若,.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過(guò)橢圓上且位于軸左側(cè)的一點(diǎn)作圓的兩條切線(xiàn),分別交軸于點(diǎn)、.試推斷是否存在點(diǎn),使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=kx+log9(9x+1)(k∈R)是偶函數(shù).
(1)求k的值;
(2)若函數(shù)g(x)=log9(a3x﹣ a)的圖象與f(x)的圖象有且只有一個(gè)公共點(diǎn),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com